Skip to main content
Log in

An autoregressive growth model for longitudinal item analysis

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

A first-order autoregressive growth model is proposed for longitudinal binary item analysis where responses to the same items are conditionally dependent across time given the latent traits. Specifically, the item response probability for a given item at a given time depends on the latent trait as well as the response to the same item at the previous time, or the lagged response. An initial conditions problem arises because there is no lagged response at the initial time period. We handle this problem by adapting solutions proposed for dynamic models in panel data econometrics. Asymptotic and finite sample power for the autoregressive parameters are investigated. The consequences of ignoring local dependence and the initial conditions problem are also examined for data simulated from a first-order autoregressive growth model. The proposed methods are applied to longitudinal data on Korean students’ self-esteem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aitkin, M., & Alfó, M. (1998). Regression models for longitudinal binary responses. Statistics and Computing, 8, 289–307.

    Article  Google Scholar 

  • Aitkin, M., & Alfó, M. (2003). Longitudinal analysis of repeated binary data using autoregressive and random effect modelling. Statistical Modelling, 3, 291–303.

    Article  Google Scholar 

  • Andersen, E. B. (1985). Estimating latent correlations between repeated testings. Psychometrika, 50, 3–16.

    Article  Google Scholar 

  • Arulampalam, W., & Stewart, M. B. (2009). Simplified implementation of the heckman estimator of the dynamic probit model and a comparison with alternative estimators. Oxford Bulletin of Economics and Statistics, 71, 659–681.

    Article  Google Scholar 

  • Bartolucci, F., & Nigro, V. (2010). A dynamic model for binary panel data with unobserved heterogeneity admitting a \(\sqrt{n}\)-consistent conditional estimator. Econometrica, 78, 719–733.

    Article  Google Scholar 

  • Bollen, K. A. (1989). Structural equations with latent variables. New York: Wiley.

    Book  Google Scholar 

  • Bollen, K. A., & Curran, P. J. (2004). Autoregressive latent trajectory (ALT) models: A synthesis of two traditions. Sociological Methods & Research, 32, 336–383.

    Article  Google Scholar 

  • Bollen, K. A., & Stine, R. A. (1992). Bootstrapping goodness-of-fit measures in structural equation models. Sociological Methods & Research, 21, 205–229.

    Article  Google Scholar 

  • Bradlow, E. T., Wainer, H., & Wang, X. (1999). A Bayesian random effects model for testlets. Psychometrika, 64, 153–168.

    Article  Google Scholar 

  • Braeken, J. (2011). A boundary mixture approach violations of conditional independence. Psychometrika, 76, 57–76.

    Article  Google Scholar 

  • Braeken, J., Tuerlinckx, F., & De Boeck, P. (2007). Copula functions for residual dependency. Psychometrika, 72, 393–411.

    Article  Google Scholar 

  • Breinegaard, A., Rabe-Hesketh, S., & Skrondal, A. (2015). The transition model test for serial dependence in mixed-effects models for binary data. Statistical Methods in Medical Research. doi:10.1177/0962280215588123.

  • Buse, A. (1982). The likelihood ratio, Wald, and Lagrange multiplier tests: An expository note. The American Statistician, 36, 153–157.

    Google Scholar 

  • Cai, L. (2010). A two-tier full-information item factor analysis model with applications. Psychometrika, 75, 581–612.

    Article  Google Scholar 

  • De Boeck, P., Bakker, M., Zwitser, R., Nivard, M., Hofman, A., Tuerlinckx, F., et al. (2011). The estimation of item response models with the lmer function from the lme4 package in R. Journal of Statistical Software, 39, 1–28.

    Article  Google Scholar 

  • Dunson, D. B. (2003). Dynamic latent trait models for multidimensional longitudinal data. Journal of the American Statistical Association, 98, 555–563.

    Article  Google Scholar 

  • Embretson, S. E. (1991). A multidimensional latent trait model for measuring learning and change. Psychometrika, 56, 495–515.

    Article  Google Scholar 

  • Engle, R. F. (1980). Wald, likelihood ratio and Lagrange multiplier test in econometrics. In Z. Griliches & M. Intriligator (Eds.), Handbook of econometrics (pp. 775–826). Amsterdam: North-Holland Science Publishers.

    Google Scholar 

  • Fahrmeir, L., & Kaufmann, H. (1987). Regression models for non-stationary categorical time series. Journal of Time Series Analysis, 8, 147–160.

    Article  Google Scholar 

  • Fotouhi, A. R. (2005). The initial conditions problem in longitudinal binary process: A simulation study. Simulation Modelling Practice and Theory, 13, 566–583.

    Article  Google Scholar 

  • Gibbons, R. D., & Hedeker, D. (1992). Full-information item bi-factor analysis. Psychometrika, 57, 423–436.

    Article  Google Scholar 

  • Hancock, G. R., & Kuo, W. (2001). An illustration of second-order latent growth models. Structural Equation Modeling, 8, 470–489.

    Article  Google Scholar 

  • Heagerty, P., & Kurland, B. (2001). Misspecified maximum likelihood estimates and generalised linear mixed models. Biometrika, 88, 973–985.

    Article  Google Scholar 

  • Heckman, J. J. (1981). The incidental parameters problem and the problem of initial conditions in estimating a discrete time-discrete data stochastic process. In C. F. Manski & D. MacFadden (Eds.), Structural analysis of discrete data with econometric applications (pp. 179–195). Cambridge: MIT Press.

    Google Scholar 

  • Hoskens, M., & De Boeck, P. (1997). A parametric model for local item dependence among test items. Psychological Methods, 2, 261–277.

    Article  Google Scholar 

  • Hsiao, C. (2003). Analysis of panel data (2nd ed.). New York: Cambridge University Press.

    Book  Google Scholar 

  • Jeon, M. (2012). Estimation of Complex Generalized Linear Mixed Models for Measurement and Growth. PhD thesis, University of California, Berkeley.

  • Jeon, M., & Rabe-Hesketh, S. (2012). Profile-likelihood approach for estimating generalized linear mixed models with factor structures. Journal of Educational and Behavioral Statistics, 37, 518–542.

    Article  Google Scholar 

  • Jeon, M., Rijmen, F., & Rabe-Hesketh, S. (2013). Modeling differential item functioning using a generalization of the multiple-group bifactor model. Journal of Educational and Behavioral Statistics, 38, 32–60.

    Article  Google Scholar 

  • Lee, K.-S., Lim, H.-J., & Ahn, S.-Y. (2010). Korea Youth Panel Study. National Youth Policy Institute, Seoul. Retrieved http://archive.nypi.re.kr.

  • Maydeu-Olivares, A., & Joe, H. (2014). Assessing approximate fit in categorical data analysis. Multivariate Behavioral Research, 49, 305–328.

    Article  PubMed  Google Scholar 

  • McArdle, J. J. (1988). Dynamic but structural equation modeling of repeated measures data. In R. B. Cattell & J. Nesselroade (Eds.), Handbook of multivariate experimental psychology (pp. 561–614). New York: Plenum Press.

    Chapter  Google Scholar 

  • Mellenbergh, G. J. (1989). Item bias and item response theory. International Journal of Educational Research, 13, 127–143.

    Article  Google Scholar 

  • Meredith, W., & Millsap, R. E. (1992). On the misuse of manifest variables in the detection of measurement bias. Psychometrika, 57, 289–311.

    Article  Google Scholar 

  • Millsap, R. E. (2010). Testing measurement invariance using item response theory in longitudinal data: An introduction. Child Development Perspectives, 4, 5–9.

    Article  Google Scholar 

  • Pastor, D. A., & Beretvas, S. N. (2006). Longitudinal Rasch modeling in the context of psychotherapy. Applied Psychological Measurement, 30, 100–120.

    Article  Google Scholar 

  • Potscher, B. M., & Srinivasan, S. (1994). A comparison of order estimation procedures for ARMA models. Statistica Sinica, 4, 29–50.

    Google Scholar 

  • Rabe-Hesketh, S., Skrondal, A., & Pickles, A. (2005). Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects. Journal of Econometrics, 128, 301–323.

    Article  Google Scholar 

  • Rijmen, F. (2009). An efficient EM algorithm for multidimensional IRT models: Full information maximum likelihood estimation in limited time. ETS Research Report (RR0903).

  • Rogers, H. J., & Swaminathan, H. (1993). A comparison of logistic regression and Mantel-Haenszel procedures for detecting differential item functioning. Applied Psychological Measurement, 17, 105–116.

    Article  Google Scholar 

  • Rotnitzky, A., & Wypij, D. (1994). A note on the bias of estimators with missing data. Biometrics, 50, 1163–1170.

    Article  PubMed  Google Scholar 

  • Rubin, D. B. (1976). Inference and missing data (with discussion). Biometrka, 63, 581–592.

    Article  Google Scholar 

  • Satorra, A., & Saris, W. (1985). Power of the likelihood ratio test in covariance structure analysis. Psychometrika, 51, 83–90.

    Article  Google Scholar 

  • Sayer, A. G., & Cumsille, P. E. (2001). Second-order latent growth model. In L. M. Collins & A. G. Sayer (Eds.), New methods for the analysis of change (pp. 179–199). Washington, DC: American Psychological Association.

    Chapter  Google Scholar 

  • Segawa, E. (2005). A growth model for multilevel ordinal data. Journal of Educational and Behavioral Statistics, 30, 369–396.

    Article  Google Scholar 

  • Serrano, D. (2010). A second-order growth model for longitudinal item response data. PhD thesis, University of North Carolina, Chapel Hill.

  • Skrondal, A., & Rabe-Hesketh, S. (2014). Handling initial conditions and endogenous covariates in dynamic/transiton models for binary data with unobserved heterogeneity. Journal of the Royal Statistical Society Series C, 63, 211–237.

    Article  Google Scholar 

  • Tuerlinckx, F., & De Boeck, P. (2001). The effect of ignoring item interactions on the estimated discrimination parameters in item response theory. Psychological Methods, 6, 181–195.

    Article  PubMed  Google Scholar 

  • Vasdekis, V. G. S., Cagnone, S., & Moustaki, I. (2012). A composite likelihood inference in latent variable models for ordinal longitudinal responses. Psychometrika, 77, 425–441.

    Article  Google Scholar 

  • Verguts, T., & De Boeck, P. (2000). A Rasch model for learning while solving an intelligence test. Applied Psychological Measurement, 24, 151–162.

    Article  Google Scholar 

  • Verhelst, N. D., & Glas, C. A. W. (1993). A dynamic generalization of the Rasch model. Psychometrika, 58, 395–415.

    Article  Google Scholar 

  • Wang, W., & Wilson, M. (2005). The Rasch testlet model. Applied Psychological Measurement, 29, 126–149.

    Article  Google Scholar 

  • White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica, 50, 1–26.

    Article  Google Scholar 

  • Wilson, M., & Adams, R. J. (1995). Rasch models for item bundles. Psychometrika, 60, 181–198.

    Article  Google Scholar 

  • Wooldridge, J. F. (2005). Simple solutions to the initial conditions problem in dynamic, nonlinear panel data models with unobserved heterogeneity. Journal of Applied Econometrics, 20, 39–54.

    Article  Google Scholar 

  • Zumbo, B. D. (1999). A handbook on the theory and methods for differential item functioning: Logistic regression modeling as a unitary framework for binary and likert-type (ordinal) item scores. Directorate of Human Resources Research and Evaluation, Department of National Defense, Ottawa.

Download references

Acknowledgments

The research reported here was supported by the Institute of Education Sciences, U.S. Department of Education, through Grant R305D110027 to Educational Testing Service. The opinions expressed are those of the authors and do not represent the views of the Institute or the U.S. Department of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minjeong Jeon.

Appendix

Appendix

Here we illustrate how to estimate the proposed model by utilizing gllamm. We use model M1 which includes a first-order lagged effect for item 1 (used in the empirical study in Sect. 7).

Let t represent years 2003 to 2008 denoted by \(t=0, 1, 2,\ldots , 5\), respectively (i.e., \(t=0\) for year 2003). We can formulate model M1 for the initial time point (\(t=0\)) as

$$\begin{aligned} g \left( \text {Pr} (y_{tis}=1 | \delta _{1s}, \gamma _{2s} ) \right)&= \beta _i' + \alpha _i' \delta _{1s} + \alpha _i' \gamma _{2s} \text {time}_{ts} + \alpha _i' \epsilon _{ts}, \end{aligned}$$
(8)

where \(\gamma _{2s} = b+ \delta _{2s}\) (with b being the mean of \(\gamma _{2s}\). See Eq. (5)). For the following time points (\(t>0\)), we formulate the model as

$$\begin{aligned} g \left( \text {Pr} (y_{tis}=1 | y_{(t-1)1s}, \delta _{1s}, \gamma _{2s} ) \right)&= \beta _i + \lambda _{1}y_{(t-1)1s}r_{i=1} + \alpha _i \delta _{1s} + \alpha _i \gamma _{2s} \text {time}_{ts} + \alpha _i \epsilon _{ts}, \end{aligned}$$
(9)

where \(\lambda _{1}\) is the parameter for the lagged response (\(y_{(t-1)1s}\)) for item 1 (here \(r_{i=1}\) is a dummy variable for item 1). We can formulate a combined model for \(t=0\) and \(t>0\) by utilizing the dummy variable \(d_{t=0,i=1}\) that indicates item 1 at the initial time point (\(t=0\)) as follows:

$$\begin{aligned} g \left( \text {Pr} (y_{tis}=1 | y_{(t-1)1s}, \delta _{1s}, \gamma _{2s} ) \right) =&\, \beta _i + \beta _1^* d_{t=0,i=1} + \lambda _{1}y_{(t-1)1s}r_{i=1} \end{aligned}$$
(10)
$$\begin{aligned}&+ \delta _{1s} (\alpha _i + \alpha _1^* d_{t=0,i=1} ) \end{aligned}$$
(11)
$$\begin{aligned}&+ \gamma _{2s} (\alpha _i \text {time}_{ts} + \alpha _1^* \text {time}_{ts} d_{t=0,i=1}) \end{aligned}$$
(12)
$$\begin{aligned}&+ \epsilon _{ts} ( \alpha _i + \alpha _1^* d_{t=0,i=1}), \end{aligned}$$
(13)

where Eq. (10) constitutes the fixed part of the model and Eqs. (11) to (13) constitute the random part of the model. In the fixed part, \(\beta _1^* =\beta _1'-\beta _1\) and in the random part \(\alpha _1^*=\alpha _1'-\alpha _1\) and \(\gamma _{2s} = b+\delta _{2s}\).

figure a

To save on computation time, users may run the model with a small number of quadrature points (e.g., 2) and use the initial estimates as starting values with a larger number of quadrature points (e.g., 5).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, M., Rabe-Hesketh, S. An autoregressive growth model for longitudinal item analysis. Psychometrika 81, 830–850 (2016). https://doi.org/10.1007/s11336-015-9489-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-015-9489-2

Keywords

Navigation