Skip to main content
Log in

Nonclassic adrenal hyperplasia

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Nonclassic adrenal hyperplasia is most commonly attributable to mutations in CYP21A2 (also termed CYP21) encoding steroid 21-hydroxylase. Partial deficiency of this enzyme causes an imbalance in cortisol synthesis with consequent adrenal androgen excess. Unlike more severe forms of congenital adrenal hyperplasia, this condition is rarely recognized in infants, but rather is a potential cause of premature adrenarche and pubarche in children, virilization in young women, and variable symptoms in young men. This article will review relevant clinical, hormonal and genetic aspects of nonclassic adrenal hyperplasia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lutfallah C, Wang W, Mason JI, Chang YT, Haider A, Rich B, et al. Newly proposed hormonal criteria via genotypic proof for type II 3beta- hydroxysteroid dehydrogenase deficiency. J Clin Endocrinol Metab 2002;87:2611–22. doi:10.1210/jc.87.6.2611.

    Article  PubMed  CAS  Google Scholar 

  2. Mermejo LM, Elias LL, Marui S, Moreira AC, Mendonca BB, de Castro M. Refining hormonal diagnosis of type II 3beta-hydroxysteroid dehydrogenase deficiency in patients with premature pubarche and hirsutism based on HSD3B2 genotyping. J Clin Endocrinol Metab 2005;90:1287–93. doi:10.1210/jc.2004-1552.

    Article  PubMed  CAS  Google Scholar 

  3. Joehrer K, Geley S, Strasser-Wozak EM, Azziz R, Wollmann HA, Schmitt K, et al. CYP11B1 mutations causing non-classic adrenal hyperplasia due to 11 beta-hydroxylase deficiency. Hum Mol Genet 1997;6:1829–34. doi:10.1093/hmg/6.11.1829.

    Article  PubMed  CAS  Google Scholar 

  4. Speiser PW, Dupont B, Rubinstein P, Piazza A, Kastelan A, New MI. High frequency of nonclassical steroid 21-hydroxylase deficiency. Am J Hum Genet 1985;37:650–67.

    PubMed  CAS  Google Scholar 

  5. Pang S. Newborn screening for congenital adrenal hyperplasia. Pediatr Ann 2003;32:516–23.

    PubMed  Google Scholar 

  6. Hingre RV, Gross SJ, Hingre KS, Mayes DM, Richman RA. Adrenal steroidogenesis in very low birth weight preterm infants. J Clin Endocrinol Metab 1994;78:266–70. doi:10.1210/jc.78.2.266.

    Article  PubMed  CAS  Google Scholar 

  7. New MI, Lorenzen F, Lerner AJ, Kohn B, Oberfield SE, Pollack MS, et al. Genotyping steroid 21-hydroxylase deficiency: hormonal reference data. J Clin Endocrinol Metab 1983;57:320–6.

    PubMed  CAS  Google Scholar 

  8. Azziz R, Hincapie LA, Knochenhauer ES, Dewailly D, Fox L, Boots LR. Screening for 21-hydroxylase-deficient nonclassic adrenal hyperplasia among hyperandrogenic women: a prospective study. Fertil Steril 1999;72:915–25. doi:10.1016/S0015-0282(99)00383-0.

    Article  PubMed  CAS  Google Scholar 

  9. Schreiner F, Brack C, Salzgeber K, Vorhoff W, Woelfle J, Gohlke B. False negative 17-hydroxyprogesterone screening in children with classical congenital adrenal hyperplasia. Eur J Pediatr 2008;167:479–81.

    Article  PubMed  CAS  Google Scholar 

  10. Votava F, Torok D, Kovacs J, Moslinger D, Baumgartner-Parzer SM, Solyom J, et al. Estimation of the false-negative rate in newborn screening for congenital adrenal hyperplasia. Eur J Endocrinol 2005;152:869–74. doi:10.1530/eje.1.01929.

    Article  PubMed  CAS  Google Scholar 

  11. de Weerth C, Zijl RH, Buitelaar JK. Development of cortisol circadian rhythm in infancy. Early Hum Dev 2003;73:39–52. doi:10.1016/S0378-3782(03)00074-4.

    Article  PubMed  CAS  Google Scholar 

  12. Matern D, Tortorelli S, Oglesbee D, Gavrilov D, Rinaldo P. Reduction of the false-positive rate in newborn screening by implementation of MS/MS-based second-tier tests: the Mayo Clinic experience (2004–2007). J Inherit Metab Dis 2007;30:585–92. doi:10.1007/s10545-007-0691-y.

    Article  PubMed  CAS  Google Scholar 

  13. Fitness J, Dixit N, Webster D, Torresani T, Pergolizzi R, Speiser PW, et al. Genotyping of CYP21, linked chromosome 6p markers, and a sex-specific gene in neonatal screening for congenital adrenal hyperplasia. J Clin Endocrinol Metab 1999;84:960–6. doi:10.1210/jc.84.3.960.

    Article  PubMed  CAS  Google Scholar 

  14. Nordenstrom A, Wedell A, Hagenfeldt L, Marcus C, Larsson A. Neonatal screening for congenital adrenal hyperplasia: 17- hydroxyprogesterone levels and CYP21 genotypes in preterm infants 1. Pediatrics 2001;108:E68.

    Article  PubMed  CAS  Google Scholar 

  15. Balducci R, Boscherini B, Mangiantini A, Morellini M, Toscano V. Isolated precocious pubarche: an approach. J Clin Endocrinol Metab 1994;79:582–9. doi:10.1210/jc.79.2.582.

    Article  PubMed  CAS  Google Scholar 

  16. Auchus RJ, Rainey WE. Adrenarche - physiology, biochemistry and human disease. Clin Endocrinol (Oxf) 2004;60:288–96. doi:10.1046/j.1365-2265.2003.01858.x.

    Article  CAS  Google Scholar 

  17. Kaplowitz PB, Oberfield SE. Reexamination of the age limit for defining when puberty is precocious in girls in the United States: implications for evaluation and treatment. Drug and Therapeutics and Executive Committees of the Lawson Wilkins Pediatric Endocrine Society. Pediatrics 1999;104:936–41. doi:10.1542/peds.104.4.936.

    Article  PubMed  CAS  Google Scholar 

  18. Eugster EA, Dimeglio LA, Wright JC, Freidenberg GR, Seshadri R, Pescovitz OH. Height outcome in congenital adrenal hyperplasia caused by 21-hydroxylase deficiency: A meta-analysis. J Pediatr 2001;138:26–32. doi:10.1067/mpd.2001.110527.

    Article  PubMed  CAS  Google Scholar 

  19. Moran C, Azziz R, Carmina E, Dewailly D, Fruzzetti F, Ibanez L, et al. 21-Hydroxylase-deficient nonclassic adrenal hyperplasia is a progressive disorder: A multicenter study. Am J Obstet Gynecol 2000;183:1468–74. doi:10.1067/mob.2000.108020.

    Article  PubMed  CAS  Google Scholar 

  20. Lacey JM, Minutti CZ, Magera MJ, Tauscher AL, Casetta B, McCann M, et al. Improved specificity of newborn screening for congenital adrenal hyperplasia by second-tier steroid profiling using tandem mass spectrometry. Clin Chem 2004;50:621–5.

    Article  PubMed  CAS  Google Scholar 

  21. Rosenfield RL. Clinical practice. Hirsutism. N Engl J Med 2005;353:2578–88. doi:10.1056/NEJMcp033496.

    Article  PubMed  CAS  Google Scholar 

  22. Azziz R, Sanchez LA, Knochenhauer ES, Moran C, Lazenby J, Stephens KC, et al. Androgen excess in women: experience with over 1000 consecutive patients. J Clin Endocrinol Metab 2004;89:453–62. doi:10.1210/jc.2003-031122.

    Article  PubMed  CAS  Google Scholar 

  23. Moran C, Azziz R, Weintrob N, Witchel SF, Rohmer V, Dewailly D, et al. Reproductive outcome of women with 21-hydroxylase-deficient nonclassic adrenal hyperplasia. J Clin Endocrinol Metab 2006;91:3451–6. doi:10.1210/jc.2006-0062.

    Article  PubMed  CAS  Google Scholar 

  24. Augarten A, Weissenberg R, Pariente C, Sack J. Reversible male infertility in late onset congenital adrenal hyperplasia. J Endocrinol Invest 1991;14:237–40.

    PubMed  CAS  Google Scholar 

  25. Kalachanis I, Rousso D, Kourtis A, Goutzioulis F, Makedos G, Panidis D. Reversible infertility, pharmaceutical and spontaneous, in a male with late onset congenital adrenal hyperplasia, due to 21-hydroxylase deficiency 4. Arch Androl 2002;48:37–41. doi:10.1080/014850102753385198.

    Article  PubMed  CAS  Google Scholar 

  26. Terzolo M, Osella G, Ali A, Borretta G, Magro GP, Termine A, et al. Different patterns of steroid secretion in patients with adrenal incidentaloma. J Clin Endocrinol Metab 1996;81:740–4. doi:10.1210/jc.81.2.740.

    Article  PubMed  CAS  Google Scholar 

  27. Bernal GC, Fernandez SC, Martinez S, Ezquieta ZB. Premature androgenetic alopecia in adult male with nonclassic 21-OH deficiency. A novel nonsense CYP21A2 mutation (Y336X) in 2 affected siblings. Med Clin (Barc) 2006;127:617–21.

    Google Scholar 

  28. Claahsen-van der Grinten HL, Sweep FC, Blickman JG, Hermus AR, Otten BJ. Prevalence of testicular adrenal rest tumours in male children with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Eur J Endocrinol 2007;157:339–44. doi:10.1530/EJE-07-0201.

    Article  PubMed  CAS  Google Scholar 

  29. Claahsen-van der Grinten HL, Otten BJ, Sweep FC, Span PN, Ross HA, Meuleman EJ, et al. Testicular tumors in patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency show functional features of adrenocortical tissue. J Clin Endocrinol Metab 2007;92:3674–80. doi:10.1210/jc.2007-0337.

    Article  PubMed  CAS  Google Scholar 

  30. Speiser PW, White PC. Congenital adrenal hyperplasia. N Engl J Med 2003;349:776–88. doi:10.1056/NEJMra021561.

    Article  PubMed  CAS  Google Scholar 

  31. The Human Gene Mutation Database. http://www hgmd cf ac uk/ac/gene php?gene = CYP21A2 2008

  32. Speiser PW, Dupont J, Zhu D, Serrat J, Buegeleisen M, Tusie-Luna MT, et al. Disease expression and molecular genotype in congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J Clin Invest 1992;90:584–95. doi:10.1172/JCI115897.

    Article  PubMed  CAS  Google Scholar 

  33. Speiser PW, New MI, White PC. Molecular genetic analysis of nonclassic steroid 21-hydroxylase deficiency associated with HLA-B14,DR1. N Engl J Med 1988;319:19–23.

    PubMed  CAS  Google Scholar 

  34. Tusie-Luna MT, Traktman P, White PC. Determination of functional effects of mutations in the steroid 21- hydroxylase gene (CYP21) using recombinant vaccinia virus. J Biol Chem 1990;265:20916–22.

    PubMed  CAS  Google Scholar 

  35. Israel S, Weinrib L, Weintrob N, Miller K, Brautbar C. Distribution of the V281L mutation of the CYP21 gene in Israeli congenital adrenal hyperplasia patients and its associate with HLA-B14. Pediatr Endocrinol Rev 2006;5:447–50.

    Google Scholar 

  36. Shinagawa T, Horikawa R, Isojima T, Naiki Y, Tanaka T, Katsumata N. Nonclassic steroid 21-hydroxylase deficiency due to a homozygous V281L mutation in CYP21A2 detected by the neonatal mass-screening program in Japan. Endocr J 2007;54:1021–5.

    Article  PubMed  CAS  Google Scholar 

  37. Tusie-Luna MT, Speiser PW, Dumic M, New MI, White PC. A mutation (Pro-30 to Leu) in CYP21 represents a potential nonclassic steroid 21-hydroxylase deficiency allele. Mol Endocrinol 1991;5:685–92.

    Article  PubMed  CAS  Google Scholar 

  38. Helmberg A, Tusie-Luna MT, Tabarelli M, Kofler R, White PC. R339H and P453S: CYP21 mutations associated with nonclassic steroid 21- hydroxylase deficiency that are not apparent gene conversions. Mol Endocrinol 1992;6:1318–22. doi:10.1210/me.6.8.1318.

    Article  PubMed  CAS  Google Scholar 

  39. Menassa R, Tardy V, Despert F, Bouvattier-Morel C, Brossier JP, Cartigny M, et al. p.H62L, a rare mutation of the CYP21 gene identified in two forms of 21-hydroxylase deficiency. J Clin Endocrinol Metab 2008;93:1901–8. doi:10.1210/jc.2007-2701.

    Article  PubMed  CAS  Google Scholar 

  40. Soardi FC, Barbaro M, Lau IF, Lemos-Marini SH, Baptista MT, Guerra-Junior G, Wedell A, Lajic S, De Mello MP. Inhibition of CYP21A2 enzyme activity caused by novel missense mutations identified in Brazilian and Scandinavian patients. J Clin Endocrinol Metab 2008;93:2416–20.

    Article  PubMed  CAS  Google Scholar 

  41. Balsamo A, Cacciari E, Baldazzi L, Tartaglia L, Cassio A, Mantovani V, et al. CYP21 analysis and phenotype/genotype relationship in the screened population of the Italian Emilia-Romagna region. Clin Endocrinol (Oxf) 2000;53:117–25. doi:10.1046/j.1365–2265.2000.01048.x.

    Article  CAS  Google Scholar 

  42. Dolzan V, Stopar-Obreza M, Zerjav-Tansek M, Breskvar K, Krzisnik C, Battelino T. Mutational spectrum of congenital adrenal hyperplasia in Slovenian patients: a novel Ala15Thr mutation and Pro30Leu within a larger gene conversion associated with a severe form of the disease. Eur J Endocrinol 2003;149:137–44. doi:10.1530/eje.0.1490137.

    Article  PubMed  CAS  Google Scholar 

  43. Therrell BL Jr, Berenbaum SA, Manter-Kapanke V, Simmank J, Korman K, Prentice L, et al. Results of screening 1.9 million Texas newborns for 21-hydroxylase- deficient congenital adrenal hyperplasia. Pediatrics 1998;101:583–90. doi:10.1542/peds.101.4.583.

    Article  PubMed  Google Scholar 

  44. Kohn B, Levine LS, Pollack MS, Pang S, Lorenzen F, Levy D, et al. Late-onset steroid 21-hydroxylase deficiency: a variant of classical congenital adrenal hyperplasia. J Clin Endocrinol Metab 1982;55:817–27.

    Article  PubMed  CAS  Google Scholar 

  45. Roldan MB, White C, Witchel SF. Association of the GAA1013–>GAG polymorphism of the insulin-like growth factor-1 receptor (IGF1R) gene with premature pubarche. Fertil Steril 2007;88:410–7. doi:10.1016/j.fertnstert.2006.11.126.

    Article  PubMed  CAS  Google Scholar 

  46. Vottero A, Stratakis CA, Ghizzoni L, Longui CA, Karl M, Chrousos GP. Androgen receptor-mediated hypersensitivity to androgens in women with nonhyperandrogenic hirsutism: skewing of X-chromosome inactivation. J Clin Endocrinol Metab 1999;84:1091–5. doi:10.1210/jc.84.3.1091.

    Article  PubMed  CAS  Google Scholar 

  47. Rocha RO, Billerbeck AE, Pinto EM, Melo KF, Lin CJ, Longui CA, Mendonca BB, Bachega TA. The degree of external genitalia virilization in girls with 21-hydroxylase deficiency appears to be influenced by the CAG repeats in the androgen receptor gene. Clin Endocrinol (Oxf) 2008;68:226–32.

    CAS  Google Scholar 

  48. Scott RR, Gomes LG, Huang N, Van Vliet G, Miller WL. Apparent manifesting heterozygosity in P450 oxidoreductase deficiency and its effect on coexisting 21-hydroxylase deficiency. J Clin Endocrinol Metab 2007;92:2318–22. doi:10.1210/jc.2006-2345.

    Article  PubMed  CAS  Google Scholar 

  49. Consensus Statement on 21-Hydroxylase Deficiency from The European Society for Paediatric Endocrinology and The Lawson Wilkins Pediatric Endocrine Society. Horm Res. 2002;58:188–95. doi:10.1159/000065490.

    Google Scholar 

  50. Clayton PE, Miller WL, Oberfield SE, Ritzen EM, Sippell WG, Speiser PW. Consensus statement on 21-hydroxylase deficiency from the Lawson Wilkins Pediatric Endocrine Society and The European Society for Pediatric Endocrinology. J Clin Endocrinol Metab 2002;87:4048–53. doi:10.1210/jc.2002–020611.

    Article  CAS  Google Scholar 

  51. Kerrigan JR, Veldhuis JD, Leyo SA, Iranmanesh A, Rogol AD. Estimation of daily cortisol production and clearance rates in normal pubertal males by deconvolution analysis. J Clin Endocrinol Metab 1993;76:1505–10. doi:10.1210/jc.76.6.1505.

    Article  PubMed  CAS  Google Scholar 

  52. Lin-Su K, Vogiatzi MG, Marshall I, Harbison MD, Macapagal MC, Betensky B, et al. Treatment with growth hormone and luteinizing hormone releasing hormone analog improves final adult height in children with congenital adrenal hyperplasia. J Clin Endocrinol Metab 2005;90:3318–25. doi:10.1210/jc.2004-2128.

    Article  PubMed  CAS  Google Scholar 

  53. Merke DP, Keil MF, Jones JV, Fields J, Hill S, Cutler GB Jr. Flutamide, testolactone, and reduced hydrocortisone dose maintain normal growth velocity and bone maturation despite elevated androgen levels in children with congenital adrenal hyperplasia. J Clin Endocrinol Metab 2000;85:1114–20. doi:10.1210/jc.85.3.1114.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phyllis W. Speiser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Speiser, P.W. Nonclassic adrenal hyperplasia. Rev Endocr Metab Disord 10, 77–82 (2009). https://doi.org/10.1007/s11154-008-9097-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-008-9097-x

Keywords

Navigation