Skip to main content
Log in

Combined Effects of Alcohol and Stress during the Prenatal Period on Behavior in Adult Mice

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The aim of the present work was to study the effects of prenatal alcohol and stress on behavior in adult mice. Pregnant females received drinking solution containing 11% ethanol from days 1–21 of pregnancy and were subjected to stress (restriction for 2 h) on days 15–21. Their offspring (the Alcohol + Stress group) were tested at age three months using standard behavioral tests. Animals of the Alcohol + Stress group buried more marbles in the marble test, which models obsessive-compulsive disorder (OCD). In the “social behavior” test, males of the Alcohol + Stress group licked and sniffed a juvenile male longer than did controls. Prenatal alcohol and stress had no significant influence on motor activity, anxiety, or investigative behavior in adult male mice. These results led to the conclusion that the combined actions of ethanol and stress during the prenatal period induced a predisposition to the development of OCD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. V. Bazovkina, A. V. Kulikov, E. M. Kondaurova, and N. K. Popova, “Selection for predisposition to catalepsy increases depression- like behavior in mice,” Genetika, 41, No. 9, 1222–1228 (2005).

    PubMed  CAS  Google Scholar 

  2. A. V. Kulikov,V. A. Kulikov, and D. V. Bazovkina, “Digital processing of visual information in a behavioral experiment,” Zh. Vyssh. Nerv. Deyat., 55, No. 1, 116–122 (2005).

    Google Scholar 

  3. V. A. Kulikov, V. A. Kirichuk, M. A. Tikhonova, and A. V. Kulikov, “Use of probability densities for automatic measurement of spatial preference in ethological experiments,” Dokl. Ros. Akad. Nauk., 417, No. 2, 29–282 (2007).

    Google Scholar 

  4. E. V. Naumenko, N. N. Dygalo, and L. N. Maslova, “Prolonged modification of stress reactivity by treatment during prenatal ontogeny,” in: Ontogenetic and Evolutionary Genetic Aspects of the Neuroendocrine Regulation of Stress [in Russian], Nauka, Novosibirsk (1990).

    Google Scholar 

  5. B. Aouizerate, D. Guehl, E. Cuny, A. Rougier, B. Biolac, J. Tignol, and P. Burbaud, “Pathophysiology of obsessive compulsive disorder: a necessary link between the phenomenology, neuropsychology, imagery and physiology,” Prog. Neurobiol., 72, 195–2212 (2004).

    Article  PubMed  Google Scholar 

  6. J. A. Bartz and E. Hollander, “Is obsessive-compulsive disorder an anxiety disorder?” Progr. Neuropsychopharmcol. Biol. Psychiatry, 30, No. 3, 338–352 (2006).

    Article  Google Scholar 

  7. V. Boulougouris, S. R. Chamberlain, and T. W. Robbins, “Crossspecies models of OCD spectrum disorders,” Psychiatry Res., 170, No. 1, 15–21 (2009).

    Article  PubMed  Google Scholar 

  8. K. K. Caldwell, S. Sheema, R. D. Paz, S. L. Samudio-Ruiz, M. H. Laughlin, N. E. Spence, M. J. Roehlk, S. N. Alcon, and A. M. Allan, “Fetal alcohol spectrum disorder-associated depression: evidence for reductions in the levels of brain-derived neurotrophic factor in a mouse model,” Pharmacol. Biochem. Behav., 90, No. 4, 614–624 (2008).

    Article  PubMed  CAS  Google Scholar 

  9. F. Calhoun, M. L. Attilia, P. A. Spagnolo, C. Rotondo, R. Mancinelli, and M. Ceccanti, “National Institute on Alcohol Abuse and Alcoholism and the study of fetal alcohol spectrum disorders. The International Consortium,” Ann. Ist. Super. Sanita., 42, No. 1, 4–7 (2006).

    PubMed  Google Scholar 

  10. L. M. Carneiro, J. P. Diogenes, S. M. Vasconcelos, G. F. Aragão, E. C. Noronha, P. B. Gomes, and G. S. Viana, “Behavioral and neurochemical effects on rat offspring after prenatal exposure to ethanol,” Neurotoxicol. Teratol., 27, No. 4, 585–592 (2005).

    Article  PubMed  CAS  Google Scholar 

  11. Centers for Disease Control and Prevention (CDC), “Alcohol use among pregnant and non-pregnant women of childbearing age – United States, 1991–2005,” MMWR Morb. Mortal. Wkly. Rep., 58, No. 19, 529–532 (2009).

    Google Scholar 

  12. F. A. Champagne and M. J. Meaney, “Stress during gestation alters postpartum maternal care and the development of the offspring in a rodent model,” Biol. Psychiatry, 59, No. 12, 1227–1235 (2006).

    Article  PubMed  CAS  Google Scholar 

  13. S. Chung, G. H. Son, S. H. Park, E. Park, K. H. Lee, D. Geum, and K. Kim, “Differential adaptive responses to chronic stress of maternally stressed male mice offspring,” Endocrinology, 146, No. 7, 3202–3210 (2005).

    Article  PubMed  CAS  Google Scholar 

  14. M. Fiore, G. Laviola, L. Aloe, V. di Fausto, R. Mancinelli, and M. Ceccanti, “Early exposure to ethanol but not red wine at the same alcohol concentration induces behavioral and brain neurotrophin alterations in young and adult mice,” Neurotoxicology, 30, No. 1, 59–71 (2009).

    Article  PubMed  CAS  Google Scholar 

  15. D. Fiorentino, G. Coriale, P. A. Spagnolo, A. Prastaro, M. L. Attilia, R. Mancinelli, and M. Ceccanti, “Fetal alcohol syndrome disorders: experience on the field. The Lazio study preliminary report,” Ann. Ist. Super. Sanita., 42, No. 1, 53–57 (2006).

    PubMed  Google Scholar 

  16. S. Gemma, S. Vichi, and E. Testai, “Metabolic and genetic factors contributing to alcohol induced effects and fetal alcohol syndrome,” Neurosci. Biobehav. Rev., 31, No. 2, 221–229 (2007).

    Article  PubMed  CAS  Google Scholar 

  17. C. E. Hofmann, I. A. Patyk, and J. Weinberg, “Prenatal ethanol exposure: sex differences in anxiety and anxiolytic response to a 5-HT1A agonist,” Pharmacol. Biochem. Behav., 82, No. 3, 549–558 (2005).

    Article  PubMed  CAS  Google Scholar 

  18. K. S. Hougaard, M. B. Andersen, A. M. Hansen, U. Hass, T. Werge, and S. P. Lund, “Effects of prenatal exposure to chronic mild stress and toluene in rats,” Neurotoxicol. Teratol., 27, No. 1, 153–167 (2005).

    Article  PubMed  CAS  Google Scholar 

  19. Y. Ichimaru, T. Egawa, and A. Sawa, “5-HT1A subtype mediates the effect of fluvoxamine, a selective serotonin reuptake inhibitor, on marble-burying behavior in mice,” Jap. J. Pharmacol., 68, No. 1, 65–70 (1995).

    Article  PubMed  CAS  Google Scholar 

  20. D. Joel, “Current animal models of obsessive compulsive disorder: a critical review,” Neuropsychopharmacol. Biol. Psychiatry, 30, No. 3, 374–388 (2006).

    Article  Google Scholar 

  21. J. I. Koenig, G. I. Elmera, P. D. Sheparda, P. R. Leeb, C. Mayoa, B. Joya, E. Herchera, and D. L. Bradya, “Prenatal exposure to a repeated variable stress paradigm elicits behavioral and neuroendocrinological changes in the adult offspring: potential relevance to schizophrenia,” Behav. Brain Res., 156, No. 2, 251–261 (2005).

    Article  PubMed  Google Scholar 

  22. S. Korff and B. H. Harvey, “Animal models of obsessive-compulsive disorder: rationale to understanding psychobiology and pharmacology,” Psychiatr. Clin. North Am., 29, No. 2, 371–390 (2006).

    Article  PubMed  Google Scholar 

  23. A. Kulikov, M. Tikhonova, and V. Kulikov, “Automated measurement of spatial preference in the open field test with transmitted lighting,” J. Neurosci. Methods, 170, 345–351 (2008).

    Article  PubMed  Google Scholar 

  24. P. R. Lee, D. L. Brady, R. A. Shapiro, D. M. Dorsa, and J. I. Koenig, “Prenatal stress generates deficits in rat social behavior: Reversal by oxytocin,” Brain Res., 1156, 152–167 (2007).

    Article  PubMed  CAS  Google Scholar 

  25. X. Li, D. Morrow, and J. M. Wilkin, “Decreases in nestlet shredding of mice by serotonin uptake inhibitors: comparison with marble burying,” Life Sci., 78, No. 17, 1933–1939 (2006).

    Article  PubMed  CAS  Google Scholar 

  26. T. Londei, A. M. V. Valentina, and V. G. Leone, “Investigative burying by laboratory mice may involve non-functional, compulsive, behaviour,” Behav. Brain Res., 94, No. 2, 249–254 (1998).

    Article  PubMed  CAS  Google Scholar 

  27. J. N. Lugo, Jr., M. D. Marino, J. T. Gass, M. A. Wilson, and S. J. Kelly, “Ethanol exposure during development reduces resident aggression and testosterone in rats,” Physiol. Behav., 87, No. 2, 330–337 (2006).

    Article  PubMed  CAS  Google Scholar 

  28. A. Marchlewska-Koy, J. Kapusta, and M. Kruczek, “Prenatal stress modifies behaviour in offspring of bank voles (Clethrionomys glareolus),” Physiol. Behav., 79, 671–678 (2003).

    Article  Google Scholar 

  29. P. A. May, J. P. Gossage,A. S. Amrais, C. M. Adnams, H. E. Hoyme, K. L. Jones, L. K. Robinson, N. C. Khaole, C. Snell,W. O. Kalberg, L. Hendricks, L. Brooke, C. Stellavato, and D. L. Viljoen, “The epidemiology of fetal alcohol syndrome and partial FAS in a South African community,” Drug Alcohol Depend., 88, No. 2–3, 259–271 (2007).

    Article  PubMed  Google Scholar 

  30. R. B. Nayak and P. Murthy, “Fetal alcohol spectrum disorder,” Indian Pediatrics, 45, 977–983 (2008).

    PubMed  Google Scholar 

  31. K. Njung’e and S. L. Handley, “Effects of 5-HT uptake inhibitors, agonists and antagonists on the burying of harmless objects by mice: a putative test for anxiolytic agents,” Br. J. Pharmacol., 104, 105–112 (1991).

    PubMed  Google Scholar 

  32. K. Njung’e and S. L. Handley, “Evaluation of marble-burying behavior as a model of anxiety,” Pharmacol. Biochem. Behav., 38, 63–67 (1991).

    Article  PubMed  Google Scholar 

  33. M. E. Pellarés, P. A. Scacchi Berlusconi, C. Feleder, and R. A. Cutrera, “Effects of prenatal stress on motor performance and anxiety behaviour in Swiss mice,” Physiol. Behav., 92, No. 5, 951–956 (2007).

    Article  Google Scholar 

  34. D. Pan, A. Sciascia, C. V. Vorhees, and M. T. Williams, “Progression of multiple behavioral deficits with various age of onset in a murine model of Hurler syndrome,” Brain Res., 1188, No. 10, 241–253 (2008).

    Article  PubMed  CAS  Google Scholar 

  35. L. Servais, R. Hourez, B. Bearzatto, D. Gall, S. N. Schiffmann, and G. Cheron, “Purkinje cell dysfunction and alteration of long-term synaptic plasticity in fetal alcohol syndrome,” Proc. Natl. Acad. Sci. USA, 104, No. 23, 9858–9863 (2007).

    Article  PubMed  CAS  Google Scholar 

  36. A. Thomas, A. Burant, N. Bui, D. Graham, L. A. Yuva-Paylor, and R. Paylor, “Marble burying reflects a repetitive and perseverative behaviour more than novelty-induced anxiety,” Psychopharmacology (Berlin), 204, No. 2, 361–373 (2009).

    Article  CAS  Google Scholar 

  37. I. L. Ward, O. B. Ward, J. D. Affuso, W. D. Long, J. A. French, and S. E. Hendricks, “Fetal testosterone surge: specific modulations induced in male rats by maternal stress and/or alcohol consumption,” Horm. Behav., 43, No. 5, 531–539 (2003).

    Article  PubMed  CAS  Google Scholar 

  38. I. L. Ward, O. B. Ward, R. J. Winn, and D. Bielawski, “Male and female sexual behavior potential of male rats prenatally exposed to the influence of alcohol, stress, or both factors,” Behav. Neurosci., 108, No. 6, 1188–1195 (1994).

    Article  PubMed  CAS  Google Scholar 

  39. O. B. Ward, I. L. Ward, J. H. Denning, J. A. French, and S. E. Hendricks, “Postparturitional testosterone surge in male offspring of rats stressed and/or fed ethanol during late pregnancy,” Horm. Behav., 41, No. 2, 229–235 (2002).

    Article  PubMed  CAS  Google Scholar 

  40. O. B. Ward, I. L. Ward, J. H. Denning, S. E. Hendricks, and J. A. French, “Hormonal mechanisms underlying aberrant sexual differentiation in male rats prenatally exposed to alcohol, stress, or both,” Arch. Sex. Behav., 31, No. 1, 9–16 (2002).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Morozova.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 96, No. 11, pp. 1114–1121, November, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morozova, M.V., Popova, N.K. Combined Effects of Alcohol and Stress during the Prenatal Period on Behavior in Adult Mice. Neurosci Behav Physi 42, 317–321 (2012). https://doi.org/10.1007/s11055-012-9569-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-012-9569-z

Keywords

Navigation