Skip to main content
Log in

Segmentation, Grouping and Accentuation during Stimulus Perception

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Grouping, segmentation, and accentuation – processes involved in stimulus perception – are discussed. These effects are explained in terms of the universal vector coding model in neural networks. Grouping is the combination of objects or events into units on the basis of their similarity. Segmentation, conversely, is the separation of groups to the level of ensembles consisting of small numbers of objects. The processes of grouping and segmentation are regarded from the point of view of their underlying neural mechanisms. It is suggested that stimuli in neural networks are encoded by patterns of excitation of cardinal neurons. These excitation patterns can be represented as excitation vectors. Differences between stimuli are formed as the absolute magnitudes of their vector differences. The greater the perceived stimuli differ from each other, the greater the difference in their perceptual and semantic excitation vectors. The more similar the stimuli, the smaller their vector difference. This suggests that stimuli with similar excitation vectors will be grouped together in perceptual space. Conversely, stimuli with different excitation vectors will “repel” and become segmented. The spatial separation of objects increases with increases in the differences between their spatial excitation vectors. The universality of the vector coding principle can be illustrated using color contrast as an example: differences in contrasting colors increase with increases in the differences between their excitation vectors. Groups of objects with similar excitation vectors are accentuated in perception by means of summation of their excitation vectors. Groups of objects with different excitation vectors undergo mutual accentuation because of the appearance of contrast. Plastic accentuation is associated with the novelty of stimuli and is extinguished on repetition of the stimulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. V. Babenko and M. A. Botinskaya, “Transfer function of spatial frequency modulation,” in: Psychophysics Today [in Russian], V. N. Nosulenko and I. G. Skotnikov (eds.), Institute of Psychology, Russian Academy of Sciences, Moscow (2007), pp. 210–216.

    Google Scholar 

  2. O. S. Vinogradova, The Hippocampus and Memory [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  3. D. Kaneman, Attention and effort [in Russian], Smysl (2006).

  4. R. Penrose, A. Shimony, N. Cartwright, and S. Hawking, The Large, the Small, and the Human Mind [Russian translation] Mir, Moscow (2004).

    Google Scholar 

  5. V. B. Polyanskii, D. É. Alymkulov, D. V. Evtikhin, and E. N. Sokolov, “Superior colliculus neurons in the rabbit calculate brightness and color differences between stimuli,” in Psychophysics Today [in Russian], V. N. Nosulenko and I. G. Skotnikov (eds.), Institute of Psychology, Russian Academy of Sciences, Moscow (2007), pp. 165–174.

    Google Scholar 

  6. V. B. Polyanskii, D. V. Evtikhin, and D. É. Alymkulov, “Calculation of color and brightness differences by neurons in the lateral geniculate body of the rabbit,” Zh. Vyssh. Nerv. Deyat., 56, No. 1, 75–85 (2006).

    Google Scholar 

  7. V. B. Polyanskii, D. V. Evtikhin, and E. N. Sokolov, “Calculation of color and brightness differences by neurons in the visual cortex of the rabbit,” Zh. Vyssh. Nerv. Deyat., 55, No. 1, 60–70 (2005).

    Google Scholar 

  8. A. Poincare, On Science [Russian translation], Nauka, Moscow (1990).

    Google Scholar 

  9. E. N. Sokolov, Perception and Conditioned Reflexes [in Russian], Moscow State University Press, Moscow (1958).

    Google Scholar 

  10. E. N. Sokolov, “The question of the gestalt in neurobiology,” Zh. Vyssh. Nerv. Deyat., 46, No. 2, 229–237 (1996).

    CAS  Google Scholar 

  11. E. N. Sokolov, Perception and Conditioned Reflexes: A New View [in Russian], UMK Psikhologiya, Moscow (2003).

    Google Scholar 

  12. E. N. Sokolov, “The principle of vector coding in psychophysiology,” in: Synergetics and Psychology, Issue 3: Cognitive Processes [in Russian], V. I. Arshinov, I. K. Trofimova, and V. M. Shendyapin (eds.), Kognito-Tsentr, Moscow (2004), pp. 320–335.

    Google Scholar 

  13. E. N. Sokolov, “Calculation semantic differences in neural networks,” Neirokomp’yutery, No. 2, 69–78 (2004).

    Google Scholar 

  14. E. N. Sokolov, N. I. Nezlina, V. B. Polyanskii, and D. V. Evtikhin, “The orientational reflex: the ‘targeting reaction’ and the ‘projector of attention,’” Zh. Vyssh. Nerv. Deyat., 51, No. 4, 421–437 (2001).

    CAS  Google Scholar 

  15. B. M. Teplov, Psychological Studies in Military Camouflage (1923–1927) [in Russian], Tverdislov, Moscow (2006).

    Google Scholar 

  16. S. V. Fomin, E. N. Sokolov, and G. G. Vaitkyavichus, Artificial Sensory Organs. Simulation of Sensory Systems [in Russian], Nauka, Moscow (1979).

    Google Scholar 

  17. G. Khaken and Dzh. Portugali, “Synergetics, interlevel neural networks, and cognitive maps,” Synergetics and Psychology, Issue 3: Cognitive Processes [in Russian],V. I. Arshinov, I. K. Trofimova, and V. M. Shendyapin (eds.), Kognito-Tsentr, Moscow (2004), pp. 129–154.

    Google Scholar 

  18. V. M. Shendyapin, “Sensory discrimination,” in Psychophysics Today [in Russian], V. N. Nosulenko and I. G. Skotnikov (eds.), Institute of Psychology, Russian Academy of Sciences, Moscow (2007), pp. 123–134.

    Google Scholar 

  19. A. L. Yarbus, The Role of Eye Movement in Vision [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  20. K. M. Armstrong and T. Moor, “Rapid enhancement of visual cortical response discriminability by microstimulation of frontal eye field,” Proc. Natl. Acad. Sci. USA, 104, No. 22, 9499–9505 (2000).

    Article  CAS  Google Scholar 

  21. J. Beck, “Effect of deviation and of shape similarity on perceptual grouping,” Percept. Psychophysics, 1, 300–302 (1966).

    Google Scholar 

  22. J. Beck, “Perceptual grouping produced by line figures,” Percept. Psychophysics, 2, 491–495 (1967).

    Google Scholar 

  23. R. Blake and S. H. Lee, “The role of temporal structure in human vision,” Behav. Cogn. Neurosci. Rev., 4, No. 1, 21–42 (2005).

    Article  PubMed  Google Scholar 

  24. Z. Chen, “Stochastic correlative firing for figure-ground segregation,” Biol. Cybern., 92, No. 3, 192–198 (2005).

    Article  PubMed  Google Scholar 

  25. E. H. Cohen and M. Singh, “Perceived orientation of complex shape reflects graded part decomposition,” J. Vis., 6, No. 8, 805–821 (2006).

    Article  PubMed  Google Scholar 

  26. C. de Lafuente and R. Romo, “Neural correlate of subjective sensory experience gradually builds up across cortical areas,” Proc. Natl. Acad. Sci. USA, 103, No. 39, 14266–14247 (2006).

    Article  PubMed  CAS  Google Scholar 

  27. S. Durant and C. W. Clifford, “Dynamics of the influence of segmentation cues on orientation perception,” Vis. Res., 46, No. 18, 2934–2940 (2006).

    Article  PubMed  Google Scholar 

  28. W. Einhauser, I. Stout, C. Koch, and O. Carter, “Pupil dilation reflex is perceptual selection and predicts subsequent stability in perceptual rivalry,” Proc. Natl. Acad. Sci. USA, 105, No. 5, 1704–1709 (2008).

    Article  PubMed  Google Scholar 

  29. S. Grossberg, “The complementary brain: from brain dynamics to conscious experiences,” in: Psychophysics Beyond the Sensation, Ch. Kaernbach, E. Schroger, and H. Muller (eds.), Lawrence Erlbaum Assoc., Mahawah (2004), pp. 417–449.

    Google Scholar 

  30. S. H. Henry and R. C. Reid, “The koniocellular pathway in primate vision,” Ann. Rev. Neurosci., 23, 127–155 (2000).

    Article  Google Scholar 

  31. Ch. A. Izmailov and E. N. Sokolov, “Spherical model of color and brightness discrimination,” Psychol. Sci., 2, No. 4, 249–259 (1991).

    Article  Google Scholar 

  32. Ch. A. Izmailov and E. N. Sokolov, “Subjective and objective scaling of large color differences,” in: Psychophysics Beyond the Sensation, Ch. Kaernbach, E. Schroger, and H. Muller (eds.), Lawrence Erlbaum Assoc., Mahawah (2004), pp., 27–43.

    Google Scholar 

  33. D. Jameson and L. M. Hurvich, “Some quantitative aspects of an opponent-color theory. I. Chromatic responses and spectral saturation,” J. Opt. Soc. Am., 45, 546–552 (1955).

    Article  Google Scholar 

  34. G. Johansson, Configurations in Event Perception, Almquist and Wiksell, Uppsala (1950).

    Google Scholar 

  35. G. Johansson, “Studies on visual perception of locomotion,” in: Perceiving Events and Objects, G. Jansson, S. S. Bergstrom, and W. Epstein (eds.), Lawrence Erlbaum Assoc., Hillsdale (1994), pp. 225–238.

    Google Scholar 

  36. G. Johansson, “Visual vector analysis and the optic sphere theory,” in: Perceiving Events and Objects, G. Jansson, S. S. Bergstrom, and W. Epstein (eds.), Lawrence Erlbaum Assoc., Hillsdale (1994), pp. 240–294.

    Google Scholar 

  37. R. Jung, “Visual Perception and Neurophysiology,” in: Handbook of Sensory Physiology, Springer, Berlin (1973), pp. 1–133.

    Google Scholar 

  38. R. W. Kandridge, C. A. Heywood, and Z. L. Weiskran, “Color contrast processing in human striate cortex,” Proc. Natl. Acad. Sci. USA, 104, No. 38, 15129–15131 (2007).

    Article  CAS  Google Scholar 

  39. R. Kompass, “Universal temporal structures in human information processing: a neural principle and psychophysical evidence,” in: Psychophysics Beyond the Sensation, Ch. Kaernbach, E. Schroger, and H. Muller (eds.), Lawrence Erlbaum Assoc., Mahawah (2004), pp. 451–477.

    Google Scholar 

  40. J. Konorski, Integrative Activity of the Brain: an Interdisciplinary Approach, Chicago university Press, Chicago (1967).

    Google Scholar 

  41. A. V. Latanov, A. Y. Leonova, and D. V. Evtikhin, “Comparative neurobiology of color vision in humans and animals,” Neurosci. Behav. Physiol., 27, 394–404 (1997).

    Article  PubMed  CAS  Google Scholar 

  42. Y. P. Leonov and E. N. Sokolov, “The representation of colors in spherical space,” Color Res. Appl., 33, No. 2, 113–124 (2008).

    Article  Google Scholar 

  43. H. D. Lu and A. W. Roc, “Optical imaging of contrast response in macaque monkey V1 and V2,” Cereb. Cortex, 17, No. 11, 2675–2695 (2007).

    Article  PubMed  Google Scholar 

  44. D. J. Margolis and P. B. Detwiler, “Different mechanisms generate maintained activity ON and OFF retinal ganglion cells,” J. Neurosci., 27, No. 22, 5994–6005 (2007).

    Article  PubMed  CAS  Google Scholar 

  45. W. T. Maddox, “Perceptual and decisional separability,” in: Multidimensional Models of Perception and Cognition, F. G. Ashby (ed.), Lawrence Erlbaum Assoc., Hillsdale (1992), pp. 147–180.

    Google Scholar 

  46. H. J. Muller, I. Krummenacher, and D. Heller, “Dimension-bored visual attention and visual object segmentation,” in: Psychophysics Beyond the Sensation, Ch. Kaernbach, E. Schroger, and H. Muller (eds.), Lawrence Erlbaum Assoc., Mahawah (2004), pp. 221–244.

    Google Scholar 

  47. G. V. Paramei, D. L. Bimler, and C. R. Cavonius, “Color-vision variations represented in an individual-difference vector space,” Color Res. Appl., 26, 230–234 (2001).

    Article  Google Scholar 

  48. M. Posner, “Orienting of attention,” J. Exp. Psychol., 32, 3–21 (1980).

    Article  CAS  Google Scholar 

  49. P. R. Roelfsema, “Cortical algorithms for perceptual grouping,” Ann. Rev. Neurosci., 29, 203–207 (2006).

    Article  PubMed  CAS  Google Scholar 

  50. D. Sanabria, S. Soto-Faraco, J. Chan, and C. Spence, “Intra-modal perceptual grouping modulates multisensory integration: evidence from the crossmodal dynamic capture task,” Neurosci. Lett., 377, No. 1, 59–64 (2005).

    Article  PubMed  CAS  Google Scholar 

  51. R. N. Shepard, “Towards a universal law of generalization for psychological sciences,” Science, 237, 1317–1323 (1987).

    Article  PubMed  CAS  Google Scholar 

  52. Y. Shostak, Y. Ding, J. Movity-Hudson, and V. A. Casagrende, “Cortical synaptic arrangements of the third visual pathway in three primates species: Macaca mulatta, Saimiri sciureus and Aotus trivirgatus,” J. Neurosci., 22, No. 2, 2885–2893 (2002).

    PubMed  CAS  Google Scholar 

  53. J. T. Townsend and J. Spenser-Smith, “Two kinds of global perceptual separability and curvature,” in: Psychophysics Beyond the Sensation, Ch. Kaernbach, E. Schroger, and H. Muller (eds.), Lawrence Erlbaum Assoc., Mahawah (2004), pp. 89–109.

    Google Scholar 

  54. M. Wertheimer, “Untersuchungen zur Lehre von der Gestalt,” Psychologische Forschung, 4, 301–350 (1923).

    Article  Google Scholar 

  55. I. Xu and M. M. Chun, “Visual grouping in human parietal cortex,” Proc. Natl. Acad. Sci. USA, 104, No. 4, 18766–18771 (2007).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Nezlina.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 59, No. 1, pp. 15–33, January–February, 2009.

Deceased.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokolov, E.N., Nezlina, N.I. Segmentation, Grouping and Accentuation during Stimulus Perception. Neurosci Behav Physi 40, 279–293 (2010). https://doi.org/10.1007/s11055-010-9255-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-010-9255-y

Key words

Navigation