Skip to main content

Advertisement

Log in

Antifungal Resistance Mechanisms in Dermatophytes

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Although fungi do not cause outbreaks or pandemics, the incidence of severe systemic fungal infections has increased significantly, mainly because of the explosive growth in the number of patients with compromised immune system. Thus, drug resistance in pathogenic fungi, including dermatophytes, is gaining importance. The molecular aspects involved in the resistance of dermatophytes to marketed antifungals and other cytotoxic drugs, such as modifications of target enzymes, over-expression of genes encoding ATP-binding cassette (ABC) transporters and stress-response-related proteins are reviewed. Emphasis is placed on the mechanisms used by dermatophytes to overcome the inhibitory action of terbinafine and survival in the host environment. The relevance of identifying new molecular targets, of expanding the understanding about the molecular mechanisms of resistance and of using this information to design new drugs or to modify those that have become ineffective is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Ellis D, Marriott D, Hajjeh RA, Warnock D, Meyer W, Barton R. Epidemiology: surveillance of fungal infections. Med Mycol. 2000;38(Suppl 1):173–82.

    PubMed  Google Scholar 

  2. Ogawa H, Summerbell RC, Clemons KV, Koga T, Ran YP, Rashid A, Sohnle PG, Stevens DA, Tsuboi R. Dermatophytes and host defense in cutaneous mycoses. Med Mycol. 1998;36:166–73.

    PubMed  Google Scholar 

  3. Giddey K, Favre B, Quadroni M, Monod M. Closely related dermatophyte species produce different patterns of secreted proteins. FEMS Microbiol Lett. 2007;267:95–101.

    Article  PubMed  CAS  Google Scholar 

  4. Giddey K, Monod M, Barblan J, Potts A, Waridel P, Zaugg C, Quadroni M. Comprehensive analysis of proteins secreted by Trichophyton rubrum and Trichophyton violaceum under in vitro conditions. J Proteome Res. 2007;6:3081–92.

    Article  PubMed  CAS  Google Scholar 

  5. Blank IH. Measurement of pH of the skin surface. J Invest Dermatol. 1939;2:75–9.

    CAS  Google Scholar 

  6. Brasch J, Zaldua M. Enzyme patterns of dermatophytes. Mycoses. 1994;37:11–6.

    Article  PubMed  CAS  Google Scholar 

  7. Tsuboi R, Ko IJ, Takamori K, Ogawa H. Isolation of a keratinolytic proteinase from Trichophyton mentagrophytes with enzymatic activity at acidic pH. Infect Immun. 1989;57:3479–83.

    PubMed  CAS  Google Scholar 

  8. Ferreira-Nozawa MS, Nozawa SR, Martinez-Rossi NM, Rossi A. The dermatophyte Trichophyton rubrum secretes an EDTA-sensitive alkaline phosphatase on high-phosphate medium. Braz J Microbiol. 2003;34:161–4.

    Article  CAS  Google Scholar 

  9. Maranhão FC, Paião FG, Martinez-Rossi NM. Isolation of transcripts over-expressed in human pathogen Trichophyton rubrum during growth in keratin. Microb Pathog. 2007;43:166–72.

    Article  PubMed  CAS  Google Scholar 

  10. Nahas E, Terenzi HF, Rossi A. Effect of carbon source and pH on the production and secretion of acid-phosphatase (EC3.1.3.2) and alkaline-phosphatase (EC3.1.3.1) in Neurospora crassa. J Gen Microbiol. 1982;128:2017–21.

    CAS  Google Scholar 

  11. Caddick MX, Brownlee AG, Arst HN. Regulation of gene-expression by pH of the growth-medium in Aspergillus nidulans. Mol Gen Genet. 1986;203:346–53.

    Article  PubMed  CAS  Google Scholar 

  12. Ferreira-Nozawa MS, Silveira HC, Ono CJ, Fachin AL, Rossi A, Martinez-Rossi NM. The pH signaling transcription factor PacC mediates the growth of Trichophyton rubrum on human nail in vitro. Med Mycol. 2006;44:641–5.

    Article  PubMed  CAS  Google Scholar 

  13. Tilburn J, Sarkar S, Widdick DA, Espeso EA, Orejas M, Mungroo J, Penalva MA, Arst HN Jr. The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid-, alkaline-expressed genes by ambient pH. EMBO J. 1995;14:779–90.

    PubMed  CAS  Google Scholar 

  14. Davis D, Wilson RB, Mitchell AP. RIM101-dependent and -independent pathways govern pH responses in Candida albicans. Mol Cell Biol. 2000;20:971–8.

    Article  PubMed  CAS  Google Scholar 

  15. Weitzman I, Summerbell RC. The dermatophytes. Clin Microbiol Rev. 1995;8:240–59.

    PubMed  CAS  Google Scholar 

  16. Pusch U, Effendy I, Schwarz RT, Azzouz N. Glycosylphosphatidylinositols synthesized by Trichophyton rubrum in a cell-free system. Mycoses. 2003;46:104–13.

    Article  PubMed  CAS  Google Scholar 

  17. Pena-Muralla R, Ayoubi P, Graminha M, Martinez-Rossi NM, Rossi A, Prade RA Antifungal target selection in Aspergillus nidulans. Using bioinformatics to make the difference. In: Shaw KJ, editor. Pathogen genomics. Impact on human health. Totowa: The Humana Press Inc.; 2002, p. 215–30.

    Chapter  Google Scholar 

  18. Vanden Bossche H. Mechanisms of antifungal resistance. Rev Iberoam Micol. 1997;14:44–9.

    PubMed  CAS  Google Scholar 

  19. Joseph-Horne T, Hollomon D, Loeffler RS, Kelly SL. Altered P450 activity associated with direct selection for fungal azole resistance. FEBS Lett. 1995;374:174–8.

    Article  PubMed  CAS  Google Scholar 

  20. Warnock DW, Arthington-Skaggs BA, Li RK. Antifungal drug susceptibility testing and resistance in Aspergillus. Drug Resist Updat. 1999;2:326–34.

    Article  PubMed  CAS  Google Scholar 

  21. Alio AB, Mendoza M, Zambrano EA, Diaz E, Cavallera E. Dermatophytes growth curve and in vitro susceptibility test: a broth micro-titration method. Med Mycol. 2005;43:319–25.

    Article  PubMed  CAS  Google Scholar 

  22. CLSI/NCCLS. Reference method for broth dilution antifungal susceptibility testing of conidium-forming filamentous fungi. Proposed standard M38-A. In: National Committee for Clinical Laboratory Standards Wayne, PA, 2002.

  23. Ghannoum MA, Arthington-Skaggs B, Chaturvedi V, Espinel-Ingroff A, Pfaller MA, Rennie R, Rinaldi MG, Walsh TJ. Interlaboratory study of quality control isolates for a broth microdilution method (modified CLSI M38-A) for testing susceptibilities of dermatophytes to antifungals. J Clin Microbiol. 2006;44:4353–56.

    Article  PubMed  CAS  Google Scholar 

  24. Ghannoum MA, Chaturvedi V, Espinel-Ingroff A, Pfaller MA, Rinaldi MG, Lee-Yang W, Warnock DW. Intra- and interlaboratory study of a method for testing the antifungal susceptibilities of dermatophytes. J Clin Microbiol. 2004;42:2977–9.

    Article  PubMed  CAS  Google Scholar 

  25. da Silva Barros ME, de Assis Santos D, Hamdan JS. In vitro methods for antifungal susceptibility testing of Trichophyton spp. Mycol Res. 2006;110:1355–60.

    Article  CAS  Google Scholar 

  26. Guarro J, Llop C, Aguilar C, Pujol I. Comparison of in vitro antifungal susceptibilities of conidia and hyphae of filamentous fungi. Antimicrob Agents Chemother. 1997;41:2760–62.

    PubMed  CAS  Google Scholar 

  27. Mukherjee PK, Leidich SD, Isham N, Leitner I, Ryder NS, Ghannoum MA. Clinical Trichophyton rubrum strain exhibiting primary resistance to terbinafine. Antimicrob Agents Chemother. 2003;47:82–6.

    Article  PubMed  CAS  Google Scholar 

  28. Gupta AK, Ahmad I, Porretta M, Summerbell RC. Arthroconidial formation in Trichophyton raubitschekii. Mycoses. 2003;46:322–8.

    PubMed  CAS  Google Scholar 

  29. Yazdanparast SA, Barton RC. Arthroconidia production in Trichophyton rubrum and a new ex vivo model of onychomycosis. J Med Microbiol. 2006;55:1577–81.

    Article  PubMed  CAS  Google Scholar 

  30. Arrese JE, Pierard-Franchimont C, Pierard GE. A plea to bridge the gap between antifungals and the management of onychomycosis. Am J Clin Dermatol. 2001;2:281–4.

    Article  PubMed  CAS  Google Scholar 

  31. Malten KE, Thiele FA. Evaluation of skin damage. II. Water loss and carbon dioxide release measurements related to skin resistance measurements. Br J Dermatol. 1973;89:565–9.

    Article  PubMed  CAS  Google Scholar 

  32. Peltroche-Llacsahuanga H, Goyard S, d'Enfert C, Prill SK, Ernst JF. Protein O-mannosyltransferase isoforms regulate biofilm formation in Candida albicans. Antimicrob Agents Chemother. 2006;50:3488–91.

    Article  PubMed  CAS  Google Scholar 

  33. Burkhart CN, Burkhart CG, Gupta AK. Dermatophytoma: recalcitrance to treatment because of existence of fungal biofilm. J Am Acad Dermatol. 2002;47:629–31.

    Article  PubMed  Google Scholar 

  34. Hayes JD, Wolf CR. Molecular mechanisms of drug resistance. Biochem J. 1990;272:281–95.

    PubMed  CAS  Google Scholar 

  35. Robertson JG. Mechanistic basis of enzyme-targeted drugs. Biochemistry. 2005;44:5561–71.

    Article  PubMed  CAS  Google Scholar 

  36. Jandrositz A, Turnowsky F, Hogenauer G. The gene encoding squalene epoxidase from Saccharomyces cerevisiae: cloning and characterization. Gene. 1991;107:155–60.

    Article  PubMed  CAS  Google Scholar 

  37. Ruckenstuhl C, Eidenberger A, Lang S, Turnowsky F. Single amino acid exchanges in FAD-binding domains of squalene epoxidase of Saccharomyces cerevisiae lead to either loss of functionality or terbinafine sensitivity. Biochem Soc Trans. 2005;33:1197–201.

    Article  PubMed  CAS  Google Scholar 

  38. Daum G, Lees ND, Bard M, Dickson R. Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae. Yeast. 1998;14:1471–510.

    Article  PubMed  CAS  Google Scholar 

  39. Osborne CS, Leitner I, Favre B, Ryder NS. Amino acid substitution in Trichophyton rubrum squalene epoxidase associated with resistance to terbinafine. Antimicrob Agents Chemother. 2005;49:2840–4.

    Article  PubMed  CAS  Google Scholar 

  40. Eppink MH, Schreuder HA, Van Berkel WJ. Identification of a novel conserved sequence motif in flavoprotein hydroxylases with a putative dual function in FAD/NAD(P)H binding. Protein Sci. 1997;6:2454–8.

    PubMed  CAS  Google Scholar 

  41. Ryder NS, Mieth H. Allylamine antifungal drugs. Curr Top Med Mycol. 1992;4:158–88.

    PubMed  CAS  Google Scholar 

  42. Sakakibara J, Watanabe R, Kanai Y, Ono T. Molecular cloning and expression of rat squalene epoxidase. J Biol Chem. 1995;270:17–20.

    Article  PubMed  CAS  Google Scholar 

  43. Favre B, Ryder NS. Cloning and expression of squalene epoxidase from the pathogenic yeast Candida albicans. Gene. 1997;189:119–26.

    Article  PubMed  CAS  Google Scholar 

  44. Favre B, Ryder NS. Differential inhibition of fungal and mammalian squalene epoxidases by the benzylamine SDZ SBA 586 in comparison with the allylamine terbinafine. Arch Biochem Biophys. 1997;340:265–9.

    Article  PubMed  CAS  Google Scholar 

  45. Ryder NS. Terbinafine: mode of action and properties of the squalene epoxidase inhibition. Br J Dermatol. 1992;126(Suppl 39):2–7.

    Google Scholar 

  46. Leyden J. Pharmacokinetics and pharmacology of terbinafine and itraconazole. J Am Acad Dermatol. 1998;38:S42–7.

    Article  PubMed  CAS  Google Scholar 

  47. Klobucnikova V, Kohut P, Leber R, Fuchsbichler S, Schweighofer N, Turnowsky F, Hapala I. Terbinafine resistance in a pleiotropic yeast mutant is caused by a single point mutation in the ERG1 gene. Biochem Biophys Res Commun. 2003;309:666–71.

    Article  PubMed  CAS  Google Scholar 

  48. Leber R, Fuchsbichler S, Klobucnikova V, Schweighofer N, Pitters E, Wohlfarter K, Lederer M, Landl K, Ruckenstuhl C, Hapala I, Turnowsky F. Molecular mechanism of terbinafine resistance in Saccharomyces cerevisiae. Antimicrob Agents Chemother. 2003;47:3890–900.

    Article  PubMed  CAS  Google Scholar 

  49. Osborne CS, Leitner I, Hofbauer B, Fielding CA, Favre B, Ryder NS. Biological, biochemical, and molecular characterization of a new clinical Trichophyton rubrum isolate resistant to terbinafine. Antimicrob Agents Chemother. 2006;50:2234–6.

    Article  PubMed  CAS  Google Scholar 

  50. Rocha EM, Gardiner RE, Park S, Martinez-Rossi NM, Perlin DS. A Phe389Leu substitution in ErgA confers terbinafine resistance in Aspergillus fumigatus. Antimicrob Agents Chemother. 2006;50:2533–6.

    Article  PubMed  CAS  Google Scholar 

  51. Rocha EM, Almeida CB, Martinez-Rossi NM. Identification of genes involved in terbinafine resistance in Aspergillus nidulans. Lett Appl Microbiol. 2002;35:228–32.

    Article  PubMed  CAS  Google Scholar 

  52. Osherov N, Kontoyiannis DP, Romans A, May GS. Resistance to itraconazole in Aspergillus nidulans and Aspergillus fumigatus is conferred by extra copies of the A. nidulans P-450 14alpha-demethylase gene, pdmA. J Antimicrob Chemother. 2001;48:75–81.

    Article  PubMed  CAS  Google Scholar 

  53. Liu W, May GS, Lionakis MS, Lewis RE, Kontoyiannis DP. Extra copies of the Aspergillus fumigatus squalene epoxidase gene confer resistance to terbinafine: genetic approach to studying gene dose-dependent resistance to antifungals in A. fumigatus. Antimicrob Agents Chemother. 2004;48:2490–6.

    Article  PubMed  CAS  Google Scholar 

  54. Yu L, Zhang W, Wang L, Yang J, Liu T, Peng J, Leng W, Chen L, Li R, Jin Q. Transcriptional profiles of the response to ketoconazole and amphotericin B in Trichophyton rubrum. Antimicrob Agents Chemother. 2007;51:144–53.

    Article  PubMed  CAS  Google Scholar 

  55. Neyfakh AA. Mystery of multidrug transporters: the answer can be simple. Mol Microbiol. 2002;44:1123–30.

    Article  PubMed  CAS  Google Scholar 

  56. Fachin AL, Maffei CM, Martinez-Rossi NM. In vitro susceptibility of Trichophyton rubrum isolates to griseofulvin and tioconazole. Induction and isolation of a resistant mutant to both antimycotic drugs. Mycopathologia. 1996;135:141–3.

    Article  PubMed  CAS  Google Scholar 

  57. Pereira M, Fachin AL, Martinez-Rossi NM. The gene that determines resistance to tioconazole and to acridine derivatives in Aspergillus nidulans may have a corresponding gene in Trichophyton rubrum. Mycopathologia. 1998;143:71–5.

    Article  PubMed  CAS  Google Scholar 

  58. Cervelatti EP, Fachin AL, Ferreira-Nozawa MS, Martinez-Rossi NM. Molecular cloning and characterization of a novel ABC transporter gene in the human pathogen Trichophyton rubrum. Med Mycol. 2006;44:141–7.

    Article  PubMed  CAS  Google Scholar 

  59. Sanglard D, Ischer F, Monod M, Bille J. Cloning of Candida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene. Microbiology. 1997;143:405–16.

    PubMed  CAS  Google Scholar 

  60. Prasad R, De Wergifosse P, Goffeau A, Balzi E. Molecular cloning and characterization of a novel gene of Candida albicans, CDR1, conferring multiple resistance to drugs and antifungals. Curr Genet. 1995;27:320–9.

    Article  PubMed  CAS  Google Scholar 

  61. Servos J, Haase E, Brendel M. Gene SNQ2 of Saccharomyces cerevisiae, which confers resistance to 4-nitroquinoline-N-oxide and other chemicals, encodes a 169 kDa protein homologous to ATP-dependent permeases. Mol Gen Genet. 1993;236:214–18.

    Article  PubMed  CAS  Google Scholar 

  62. Fachin AL, Ferreira-Nozawa MS, Maccheroni W Jr, Martinez-Rossi NM. Role of the ABC transporter TruMDR2 in terbinafine, 4-nitroquinoline N-oxide and ethidium bromide susceptibility in Trichophyton rubrum. J Med Microbiol. 2006;55:1093–9.

    Article  PubMed  CAS  Google Scholar 

  63. Raherison S, Gonzalez P, Renaudin H, Charron A, Bebear C, Bebear CM. Increased expression of two multidrug transporter-like genes is associated with ethidium bromide and ciprofloxacin resistance in Mycoplasma hominis. Antimicrob Agents Chemother. 2005;49:421–4.

    Article  PubMed  CAS  Google Scholar 

  64. Gompel-Klein P, Brendel M. Allelism of SNQ1 and ATR1, genes of the yeast Saccharomyces cerevisiae required for controlling sensitivity to 4-nitroquinoline-N-oxide and aminotriazole. Curr Genet. 1990;18:93–6.

    Article  PubMed  CAS  Google Scholar 

  65. Niewerth M, Kunze D, Seibold M, Schaller M, Korting HC, Hube B. Ciclopirox olamine treatment affects the expression pattern of Candida albicans genes encoding virulence factors, iron metabolism proteins, and drug resistance factors. Antimicrob Agents Chemother. 2003;47:1805–17.

    Article  PubMed  CAS  Google Scholar 

  66. Lee RE, Liu TT, Barker KS, Lee RE, Rogers PD. Genome-wide expression profiling of the response to ciclopirox olamine in Candida albicans. J Antimicrob Chemother. 2005;55:655–62.

    Article  PubMed  CAS  Google Scholar 

  67. Zhang W, Yu L, Leng W, Wang X, Wang L, Deng X, Yang J, Liu T, Peng J, Wang J, Li S, Jin Q. cDNA microarray analysis of the expression profiles of Trichophyton rubrum in response to novel synthetic fatty acid synthase inhibitor PHS11A. Fungal Genet Biol 2007;44:1252–61.

    Article  PubMed  CAS  Google Scholar 

  68. Paião FG, Segato F, Cursino-Santos JR, Peres NT, Martinez-Rossi NM. Analysis of Trichophyton rubrum gene expression in response to cytotoxic drugs. FEMS Microbiol Lett. 2007;271:180–6.

    Article  PubMed  CAS  Google Scholar 

  69. Fachin AL, Contel EP, Martinez-Rossi NM. Effect of sub-MICs of antimycotics on expression of intracellular esterase of Trichophyton rubrum. Med Mycol. 2001;39:129–33.

    Article  PubMed  CAS  Google Scholar 

  70. Ahlstedt S. The antibacterial effects of low concentrations of antibiotics and host defence factors: a review. J Antimicrob Chemother. 1981;8(Suppl C):59–70.

    PubMed  CAS  Google Scholar 

  71. Held TK, Adamczik C, Trautmann M, Cross AS. Effects of MICs and sub-MICs of antibiotics on production of capsular polysaccharide of Klebsiella pneumoniae. Antimicrob Agents Chemother. 1995;39:1093–6.

    PubMed  CAS  Google Scholar 

  72. Harms N, Ras J, Reijnders WN, van Spanning RJ. Stouthamer AH. S-formylglutathione hydrolase of Paracoccus denitrificans is homologous to human esterase D: a universal pathway for formaldehyde detoxification? J Bacteriol. 1996;178:6296–9.

    PubMed  CAS  Google Scholar 

  73. Wakil SJ. Fatty acid synthase, a proficient multifunctional enzyme. Biochemistry. 1989;28:4523–30.

    Article  PubMed  CAS  Google Scholar 

  74. Chirala SS, Kuziora MA, Spector DM, Wakil SJ. Complementation of mutations and nucleotide sequence of FAS1 gene encoding beta subunit of yeast fatty acid synthase. J Biol Chem. 1987;262:4231–40.

    PubMed  CAS  Google Scholar 

  75. Kottig H, Rottner G, Beck KF, Schweizer M, Schweizer E. The pentafunctional FAS1 genes of Saccharomyces cerevisiae and Yarrowia lipolytica are co-linear and considerably longer than previously estimated. Mol Gen Genet. 1991;226:310–14.

    Article  PubMed  CAS  Google Scholar 

  76. Mohamed AH, Chirala SS, Mody NH, Huang WY, Wakil SJ. Primary structure of the multifunctional alpha subunit protein of yeast fatty acid synthase derived from FAS2 gene sequence. J Biol Chem. 1988;263:12315–25.

    PubMed  CAS  Google Scholar 

  77. Schweizer E, Kottig H, Regler R, Rottner G. Genetic control of Yarrowia lipolytica fatty acid synthetase biosynthesis and function. J Basic Microbiol. 1988;28:283–92.

    Article  PubMed  CAS  Google Scholar 

  78. Brasch J, Martins BS, Christophers E. Enzyme release by Trichophyton rubrum depends on nutritional conditions. Mycoses. 1991;34:365–8.

    PubMed  CAS  Google Scholar 

  79. Daboussi MJ, Capy P. Transposable elements in filamentous fungi. Annu Rev Microbiol. 2003;57:275–99.

    Article  PubMed  CAS  Google Scholar 

  80. Gabriel A, Dapprich J, Kunkel M, Gresham D, Pratt SC, Dunham MJ. Global mapping of transposon location. PLoS Genet. 2006;2:e212.

    Article  PubMed  CAS  Google Scholar 

  81. Borst P. Genetic mechanisms of drug resistance. A review. Acta Oncol. 1991;30:87–105.

    Article  PubMed  CAS  Google Scholar 

  82. White TC, Marr KA, Bowden RA. Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev. 1998;11:382–402.

    PubMed  CAS  Google Scholar 

  83. Graminha MA, Rocha EM, Prade RA, Martinez-Rossi NM. Terbinafine resistance mediated by salicylate 1-monooxygenase in Aspergillus nidulans. Antimicrob Agents Chemother. 2004;48:3530–5.

    Article  PubMed  CAS  Google Scholar 

  84. Hui X, Baker SJ, Wester RC, Barbadillo S, Cashmore AK, Sanders V, Hold KM, Akama T, Zhang YK, Plattner JJ, Maibach HI. In vitro penetration of a novel oxaborole antifungal (AN2690) into the human nail plate. J Pharm Sci. 2007;96:2622–31.

    Article  PubMed  CAS  Google Scholar 

  85. Osborne CS, Leitner I, Favre B, Ryder NS. Antifungal drug response in an in vitro model of dermatophyte nail infection. Med Mycol. 2004;42:159–63.

    Article  PubMed  CAS  Google Scholar 

  86. Odds FC. Genomics, molecular targets and the discovery of antifungal drugs. Rev Iberoam Micol. 2005;22:229–37.

    PubMed  Google Scholar 

  87. Jiang B, Bussey H, Roemer T. Novel strategies in antifungal lead discovery. Curr Opin Microbiol. 2002;5:466–71.

    Article  PubMed  CAS  Google Scholar 

  88. Wang L, Ma L, Leng W, Liu T, Yu L, Yang J, Yang L, Zhang W, Zhang Q, Dong J, Xue Y, Zhu Y, Xu X, Wan Z, Ding G, Yu F, Tu K, Li Y, Li R, Shen Y, Jin Q. Analysis of the dermatophyte Trichophyton rubrum expressed sequence tags. BMC Genomics. 2006;7:255.

    Article  PubMed  CAS  Google Scholar 

  89. Liu T, Zhang Q, Wang L, Yu L, Leng W, Yang J, Chen L, Peng J, Ma L, Dong J, Xu X, Xue Y, Zhu Y, Zhang W, Yang L, Li W, Sun L, Wan Z, Ding G, Yu F, Tu K, Qian Z, Li R, Shen Y, Li Y, Jin Q. The use of global transcriptional analysis to reveal the biological and cellular events involved in distinct development phases of Trichophyton rubrum conidial germination. BMC Genomics. 2007;8:100.

    Article  PubMed  CAS  Google Scholar 

  90. Perfect JR. Fungal virulence genes as targets for antifungal chemotherapy. Antimicrob Agents Chemother. 1996;40:1577–83.

    PubMed  CAS  Google Scholar 

  91. Yang J, Chen L, Wang L, Zhang W, Liu T, Jin Q. TrED: the Trichophyton rubrum Expression Database. BMC Genomics. 2007;8:250.

    Article  PubMed  CAS  Google Scholar 

  92. Lechenne B, Reichard U, Zaugg C, Fratti M, Kunert J, Boulat O, Monod M. Sulphite efflux pumps in Aspergillus fumigatus and dermatophytes. Microbiology. 2007;153:905–13.

    Article  PubMed  CAS  Google Scholar 

  93. De Backer MD, Van Dijck P. Progress in functional genomics approaches to antifungal drug target discovery. Trends Microbiol. 2003;11:470–8.

    Article  PubMed  CAS  Google Scholar 

  94. Zhao QJ, Hu HG, Li YW, Song Y, Cai LZ, Wu QY, Jiang YY. Design, synthesis, and antifungal activities of novel 1H-triazole derivatives based on the structure of the active site of fungal lanosterol 14alpha-demethylase (CYP51). Chem Biodivers. 2007;4:1472–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Brazilian funding agencies FAPESP, CNPq, CAPES and FAEPA. We thank F. Segato for communicating results before publication and A. Borghi for English review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilce M. Martinez-Rossi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez-Rossi, N.M., Peres, N.T.A. & Rossi, A. Antifungal Resistance Mechanisms in Dermatophytes. Mycopathologia 166, 369–383 (2008). https://doi.org/10.1007/s11046-008-9110-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-008-9110-7

Keywords

Navigation