Skip to main content

Advertisement

Log in

A Synthetic Peptide Based on a Natural Salivary Protein Reduces Demineralisation in Model Systems for Dental Caries and Erosion

  • Special Issue: Peptides in Oral and Dental Research
  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

The salivary protein statherin is an inhibitor of spontaneous and secondary precipitation of hydroxyapatite (HAp). It is also detected in enamel pellicle. The N-terminal region of statherin is involved in its adsorption onto tooth surfaces, and, calcium binding. A peptide (StN21) was designed with a 21 amino acid sequence identical to the N-terminus of statherin. The aim was to measure the effect of StN21 on the rate of mineral loss in a model system for dental caries and erosion using HAp subjected to artificial carious and erosive conditions. StN21 was synthesised using Fmoc chemistry. A surface of each HAp block was exposed to solution containing StN21 at concentrations 9.4–376 μmol L−1 (in phosphate buffer) for 24 h. Controls were HAp exposed to buffer only, and HAp exposed to lysozyme. Demineralising solution (0.1 mol L−1 acetic acid, pH 4.5, 1.0 mmol L−1 calcium and 0.6 mmol L−1 phosphate) was circulated past the HAp blocks at 0.4 mL min-1 to mimic carious and erosive conditions. Scanning microradiography was used to measure the rate of mineral loss for demineralisation periods of 3 weeks. The rate of mineral loss of the samples exposed to StN21 was reduced by ∼40% compared to the controls, but no dependence on the concentration of StN21 was observed at the concentrations used. StN21 has been shown to be a potent and stable peptide that has potential as a preventive/therapeutic agent in the treatment of enamel erosion and dental caries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Abbreviations

XMT:

X-ray microtomography

HBTU:

[2-(1H-benzotriazol-1yl)-1,1,3,3-tetramethyl-uronium hexafluorophosphate] HOBt (N-hydroxybenzotriazol)

MBTE:

methyl-tertiary butylether

TFA:

trifluoracetic acid

References

  • Anderson P., Elliott J.C. (2000) Caries Res. 34(1): 33–40

    Article  PubMed  CAS  Google Scholar 

  • Anderson P., Hector M. P., Rampersad M. A. (2001) Int. J. Paed. Dent. 11: 266–273

    Article  CAS  Google Scholar 

  • Chadwick, B. and Pendry, L.: 2004, Non-carious dental conditions: Children’s dental health in the United Kingdom. Office of National Statistics UK, October 2004, pp. 1–24

  • Chan W. C., White P. D. (2000). In: Chan W. C., White P. D. (Eds), Fmoc Solid Phase Peptide Synthesis. University Press, Oxford, pp 9–37

    Google Scholar 

  • Chin K. O. A., Johnsson M., Bergey E. J., Nancollas G. H. (1993) Colloids Surfaces A 78: 229–234

    Article  CAS  Google Scholar 

  • Christoffersen J., Christoffersen M. R. (1981) J. Cryst. Growth. 53(1): 42–54

    Article  CAS  Google Scholar 

  • Combes C., Ray C. (2002) Biomaterials 23: 2817–2823

    Article  PubMed  CAS  Google Scholar 

  • Dawes C., Jenkins G. N., Tonge C. H. (1963) Brit. Dent. J. 115: 65–68

    Google Scholar 

  • Dawes C. (1969) Arch. Oral. Biol. 14: 277–294

    Article  PubMed  CAS  Google Scholar 

  • Dawes C. (2004). In: Edgar M., Dawes C., O’Mullane D. (Eds), Saliva and Oral Health, 3. British Dental Association, London, pp. 71–85

    Google Scholar 

  • Dibdin G. H., Poole D. F. G. (1982) Arch. Oral. Biol. 27: 235–241

    Article  PubMed  CAS  Google Scholar 

  • Dowker S. E. P., Elliott J. C., Davis G. R., Wassif H. S. (2003) Caries Res. 37(4): 237–245

    Article  PubMed  CAS  Google Scholar 

  • Edgar W. M. (1992) Br. Dent. J. 172: 305–313

    PubMed  CAS  Google Scholar 

  • Elliott J. C. (1994). Structure and Chemistry of the Apatites and other Calcium Orthophosphates. Elsevier Science B.V., Amsterdam

    Google Scholar 

  • Elliott J. C. (1997). In: Chadwick D., Cardew G. (Eds), Dental Enamel. Wiley, Chichester, pp. 54–72

    Chapter  Google Scholar 

  • Elliott J. C., Bollet-Quivogne F. R. G., Anderson P., Dowker S. E. P., Wilson R. M., Davies G. R. (2005) Mineral Magazine 69(5): 643–652

    Article  CAS  Google Scholar 

  • Ferguson D. B. (1999). Oral Bioscience. Churchill-Livingstone, Edinburgh

    Google Scholar 

  • Furedi-Milhofer H., Moradian-Oldak J., Weiner S., Veis A., Mintz K. P., Addadi L. (1994) Connect. Tissue Res. 30: 251–264

    PubMed  CAS  Google Scholar 

  • Gao X. J., Elliott J. C., Anderson P. (1991) Caries Res. 70: 1332–1337

    CAS  Google Scholar 

  • Guo T., Rudnick P. A., Wang W., Lee C. S., Devoe D. L., Balgley B. M. (2006) J Proteome Res. 5(6): 1469–1478

    Article  PubMed  CAS  Google Scholar 

  • Hannig M., Fiebiger M., Guntzer M., Dobert A., Zimehl R., Nekrashevych Y. (2004) Arch. Oral. Biol. 49(11): 903–910

    PubMed  CAS  Google Scholar 

  • Hay D.I., Moreno E.C. (1989). In: Tenovuo J.O. (Ed), Human Saliva: Clinical Chemistry and Microbiology 2 CRC Press INC., Boca Raton, Florida, pp. 55–91

    Google Scholar 

  • Hay D. I., Smith D. J., Schluckebier S. K., Moreno E. C. (1984) J. Dent. Res. 68: 857–863

    Google Scholar 

  • Jensen J. L., Xu T., Lamkin M. S., Brodin P., Aars H., Berg T., Oppenheim F. G. (1994) J. Dent. Res. 73(12): 1811–1817

    PubMed  CAS  Google Scholar 

  • Kousvelari E. E., Baratz R. S., Burke B. Oppenheim F. G. (1980) J. Dent. Res. 59(8): 1430–1438

    PubMed  CAS  Google Scholar 

  • Lindh L., Glantz P.-O., Stromberg N., Arnebrant T. (2002) Biofouling 18(2): 1–8

    Article  CAS  Google Scholar 

  • Long J. R., Shaw W. J., Stayton P. S., Drobny G. P. (2001). Biochemistry. 40(51): 15451–15455

    Article  PubMed  CAS  Google Scholar 

  • Lussi A. (2006) In: Lussi A. (Ed), Dental Erosion: From Diagnosis to Therapy. Monograph Oral Sci, Karger Basel, pp. 1–8

    Google Scholar 

  • Margolis H. C., Moreno E. C. (1990) Calcif. Tissue Int. 50: 606–613

    Google Scholar 

  • Margolis H. C., Zhang Y. P., Lee C. Y., Kent R. L., Moreno E. C. (1999) J. Dent. Res. 78(7): 1326–1335

    PubMed  CAS  Google Scholar 

  • Moreno E. C., Kresak M., Hay D. I. (1991) Biofouling 4: 3–24

    CAS  Google Scholar 

  • Nieuw Amerongen A. V., Veerman E. C. I. (2002) Oral Dis. 8: 12–22

    Article  Google Scholar 

  • Poumier F., Schaad Ph., Haikel Y., Voegel J. C., Gramain Ph. (1996) Colloids Surfaces B: Biointerfaces 7: 1–8

    Article  CAS  Google Scholar 

  • Proctor G. B., Hamdan S., Carpenter G. H., Wilde P. (2005) Biochem J. 389: 111–116

    Article  PubMed  CAS  Google Scholar 

  • Raj P. A., Johnsson M., Levine M. J., Nancollas G. H. (1992) J. Biol. Chem. 267(9): 5968–5976

    PubMed  CAS  Google Scholar 

  • Report of the joint WHO/FAO Expert Consultation on diet, nutrition and prevention of chronic diseases (Geneva, 28/01–1/02, 2002); WHO technical report, series No. 916 (TRS 916)

  • Reynolds E. C. (1998) Spec. Care Dentist. 18(1): 8–16

    Article  PubMed  CAS  Google Scholar 

  • Robinson C., Shore R. C., Brookes S. J., Strafford S., Wood S. R., Kirkham J. (2000) Crit. Rev. Oral Biol. Med. 11(4): 481–495

    Article  PubMed  CAS  Google Scholar 

  • Rugg-Gunn A. J. (1993) Nutrition and Dental Health. Oxford Medical Publications, Oxford

    Google Scholar 

  • Rykke M., Smistad G., Rolla G., Karlsen J. (1995) Colloids Surfaces B: Biointerfaces 4: 33–44

    Article  CAS  Google Scholar 

  • Shellis R. P., Dibdin G. H. (2000). In: Teaford M. F., Meredith-Smith. M., Ferguson M. W. J. (Eds), Development, Function and Evolution of the Teeth. Cambridge, University Press, pp. 242–251

    Google Scholar 

  • Shomers P., Tabak L. A., Levine M.J. Mandel I.D., Hay D.I. (1982) J. Dent. Res. 61(2): 397–399

    PubMed  CAS  Google Scholar 

  • Sreebny L. M. (2000) Int. Dent. J. 50: 140–161

    PubMed  CAS  Google Scholar 

  • Tang R., Hass M., Wu W., Gulde S., Nancollas G. H. (2003) J. Colloid Interface Sci. 260(2):379–384

    Article  PubMed  CAS  Google Scholar 

  • Truin G. J., van Rijkom H. M., Mulder J., van’t Hof M. A. (2005) Caries Res. 39(1): 2–8

    Article  PubMed  CAS  Google Scholar 

  • Wikiel K., Burke E. M., Perich J. W., Reynolds E. C., Nancollas G. H. (1994), Arch. Oral Biol. 39(8): 715–721

    Article  PubMed  CAS  Google Scholar 

  • Zahradnik R. T., Moreno E. C., Burke E. J. (1976) J. Dent. Res. 55(4): 664–670

    PubMed  CAS  Google Scholar 

  • White D. J. (1995) Adv. Dent. Res. 9(3): 175–193

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

JK gratefully acknowledges financial support through a Wellcome VIP award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jelena Kosoric.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosoric, J., Williams, R.A.D., Hector, M.P. et al. A Synthetic Peptide Based on a Natural Salivary Protein Reduces Demineralisation in Model Systems for Dental Caries and Erosion. Int J Pept Res Ther 13, 497–503 (2007). https://doi.org/10.1007/s10989-007-9085-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-007-9085-0

Keywords

Navigation