Skip to main content
Log in

Moderation in Management Research: What, Why, When, and How

  • Published:
Journal of Business and Psychology Aims and scope Submit manuscript

Abstract

Many theories in management, psychology, and other disciplines rely on moderating variables: those which affect the strength or nature of the relationship between two other variables. Despite the near-ubiquitous nature of such effects, the methods for testing and interpreting them are not always well understood. This article introduces the concept of moderation and describes how moderator effects are tested and interpreted for a series of model types, beginning with straightforward two-way interactions with Normal outcomes, moving to three-way and curvilinear interactions, and then to models with non-Normal outcomes including binary logistic regression and Poisson regression. In particular, methods of interpreting and probing these latter model types, such as simple slope analysis and slope difference tests, are described. It then gives answers to twelve frequently asked questions about testing and interpreting moderator effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. This test of moderation involves the same assumptions as does any “ordinary least squares” (OLS) regression analysis—i.e., residuals are independent and Normally distributed, and their variance is not related to predictors—and for most of this article I will assume this to be the case without further comment; I will deal separately with non-Normal outcomes later.

  2. Technically, the test is to compare the ratio of the coefficient to its standard error with a t-distribution with 196 degrees of freedom: 196 because it is 200 (the sample size) minus the number of parameters being estimated (four: three coefficients for three independent variables, and one intercept).

  3. Note that the variance of a coefficient can be taken from the diagonal of the coefficient covariance matrix, i.e., the variance of a coefficient with itself; alternatively, it can be calculated by squaring the standard error of that coefficient.

  4. Template for plotting such effects, along with the simple slope and slope difference tests described later are available at www.jeremydawson.com/slopes.htm.

  5. This is the method used by the relevant template at www.jeremydawson.com/slopes.htm, where there are also appropriate templates for three-way interactions, and two- and three-way interactions with Poisson regression.

  6. There is a specific template for binary moderators at www.jeremydawson.com/slopes.htm, as well as a generic template which allows any combination of binary and continuous independent and moderating variables.

References

  • Aguinis, H. (1995). Statistical power problems with moderated regression in management research. Journal of Management, 21, 1141–1158.

    Google Scholar 

  • Aguinis, H. (2004). Regression analysis for categorical moderators. New York: Guilford Press.

    Google Scholar 

  • Aguinis, H., Beaty, J. C., Boik, R. J., & Pierce, C. A. (2005). Effect size and power in assessing moderating effects of categorical variables using multiple regression: A 30-year review. Journal of Applied Psychology, 90, 94–107.

    Article  Google Scholar 

  • Aguinis, H., & Stone-Romero, E. F. (1997). Methodological artifacts in moderated multiple regression and their effects on statistical power. Journal of Applied Psychology, 82, 192–206.

    Article  Google Scholar 

  • Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. Newbury Park, London: Sage.

    Google Scholar 

  • Bauer, D. J., & Curran, P. J. (2005). Probing interactions in fixed and multilevel regression: Inferential and graphical techniques. Multivariate Behavioral Research, 40, 373–400.

    Article  Google Scholar 

  • Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Cortina, J. M. (1993). Interaction, nonlinearity, and multicollinearity: Implications for multiple regression. Journal of Management, 19, 915–922.

    Article  Google Scholar 

  • Cortina, J. M., & Landis, R. S. (2011). The earth is not round (p = .00). Organizational Research Methods, 14, 332–349.

    Article  Google Scholar 

  • Dalal, D. K., & Zickar, M. J. (2012). Some common myths about centering predictor variables in moderated multiple regression and polynomial regression. Organizational Research Methods, 15, 339–362.

    Article  Google Scholar 

  • Dunlap, W. P., & Kemery, E. R. (1988). Effects of predictor intercorrelations and reliabilities on moderated multiple regression. Organizational Behavior and Human Decision Processes, 41, 248–258.

    Article  Google Scholar 

  • Edwards, J. R. (2001). Ten difference score myths. Organizational Research Methods, 4, 265–287.

    Article  Google Scholar 

  • Edwards, J. R., & Lambert, L. S. (2007). Methods for integrating moderation and mediation: A general analytical framework using moderated path analysis. Psychological Methods, 12, 1–22.

    Article  Google Scholar 

  • Edwards, J. R., & Parry, M. E. (1993). On the use of polynomial regression equations as an alternative to difference scores in organizational research. Academy of Management Journal, 36, 1577–1613.

    Google Scholar 

  • Jaccard, J., & Wan, C. K. (1995). Measurement error in the analysis of interaction effects between continuous predictors using multiple regression: Multiple indicator and structural equation approaches. Psychological Bulletin, 117, 348–357.

    Article  Google Scholar 

  • Johnson, R. E., Rosen, C. C., & Chang, C. (2011). To aggregate or not to aggregate: Steps for developing and validating higher-order multidimensional constructs. Journal of Business and Psychology, 26, 241–248.

    Article  Google Scholar 

  • Klein, A., & Moosbrugger, H. (2000). Maximum likelihood estimation of latent interaction effects with the LMS method. Psychometrika, 65, 457–474.

    Article  Google Scholar 

  • Kromrey, J. D., & Foster-Johnson, L. (1998). Mean centering in moderated multiple regression: Much ado about nothing. Educational and Psychological Measurement, 58, 42–67.

    Article  Google Scholar 

  • Landis, R. S. (2013). Successfully combining meta-analysis and structural equation modeling: Recommendations and strategies. Journal of Business and Psychology. doi:https://doi.org/10.1007/s10869-013-9285-x.

  • Landis, R. S., & Dunlap, W. P. (2000). Moderated multiple regression tests are criterion specific. Organizational Research Methods, 3, 254–266.

    Article  Google Scholar 

  • Locke, E. A., Shaw, K. N., Saari, L. M., & Latham, G. P. (1981). Goal setting and task performance: 1969–1980. Psychological Bulletin, 90, 125–152.

    Article  Google Scholar 

  • MacKinnon, D. P., Coxe, S., & Baraldi, A. N. (2012). Guidelines for the investigation of mediating variables in business research. Journal of Business and Psychology, 27, 1–14.

    Article  Google Scholar 

  • McClelland, G. H., & Judd, C. M. (1993). Statistical difficulties of detecting interactions and moderator effects. Psychological Bulletin, 114, 376.

    Article  Google Scholar 

  • Mirisola, A., & Seta, L. (2013). pequod: Moderated regression package. R package version 0.0-3 [Computer software]. Retrieved March 20, 2013. Available from http://CRAN.R-project.org/package=pequod.

  • Muthén, L. K., & Muthén, B. O. (1998-2011). Mplus user’s guide (6th ed). Los Angeles, CA: Muthén & Muthén.

  • Overton, R. C. (2001). Moderated multiple regression for interactions involving categorical variables: A statistical control for heterogeneous variance across two groups. Psychological Methods, 6, 218–233.

    Article  Google Scholar 

  • Pinheiro, J. C., & Bates, D. M. (2000). Mixed-effects models in S and S-PLUS. Statistics and computing. New York: Springer.

    Book  Google Scholar 

  • Preacher, K. J., Curran, P. J., & Bauer, D. J. (2006). Computational tools for probing interaction effects in multiple linear regression, multilevel modeling, and latent curve analysis. Journal of Educational & Behavioral Statistics, 31, 437–448.

    Article  Google Scholar 

  • Preacher, K. J., Rucker, D. D., & Hayes, A. F. (2007). Addressing moderated mediation hypotheses: Theory, methods, and prescriptions. Multivariate Behavioral Research, 42, 185–227.

    Article  Google Scholar 

  • Rogosa, D. (1980). Comparing nonparallel regression lines. Psychological Bulletin, 88, 307–321.

    Article  Google Scholar 

  • Rutherford, A. (2001). Introducing ANOVA and ANCOVA: A GLM approach. London: Sage.

    Google Scholar 

  • Shanock, L. R., Baran, B. E., Gentry, W. A., Pattison, S. C., & Heggestad, E. D. (2010). Polynomial regression with response surface analysis: A powerful approach for examining moderation and overcoming limitations of difference scores. Journal of Business and Psychology, 25, 543–554.

    Article  Google Scholar 

  • Shieh, G. (2009). Detecting interaction effects in moderated multiple regression with continuous variables: Power and sample size considerations. Organizational Research Methods, 12, 510–528.

    Article  Google Scholar 

  • Snijders, T., & Bosker, R. (2011). Multilevel analysis: An introduction to basic and advanced multilevel modeling (2nd ed.). Thousand Oaks, CA: Sage.

    Google Scholar 

  • Stone-Romero, E. F., & Anderson, L. E. (1994). Relative power of moderated multiple regression and the comparison of subgroup correlation coefficients for detecting moderating effects. Journal of Applied Psychology, 79, 354–359.

    Article  Google Scholar 

  • Tonidandel, S., & LeBreton, J. M. (2011). Relative importance analysis: A useful supplement to regression analysis. Journal of Business and Psychology, 26, 1–9.

    Article  Google Scholar 

  • van Knippenberg, D., De Dreu, C. K. W., & Homan, A. C. (2004). Work group diversity and group performance: An integrative model and research agenda. Journal of Applied Psychology, 89, 1008–1022.

    Article  Google Scholar 

  • West, B., Welch, K. B., & Galecki, A. T. (2007). Linear mixed models: A practical guide using statistical software. Boca Raton, FL: Chapman & Hall.

    Google Scholar 

  • Wilcox, R. R. (1998). How many discoveries have been lost by ignoring modern statistical methods? American Psychologist, 53, 300–314.

    Article  Google Scholar 

Download references

Acknowledgments

I am grateful to Ron Landis, Scott Tonidandel, and Steven Rogelberg for their comments on earlier drafts of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy F. Dawson.

Appendix: SPSS Syntax for the Models Described in the Article

Appendix: SPSS Syntax for the Models Described in the Article

In this Appendix, variable names are shown in upper case (capitals) and SPSS commands in lower case. In reality the case does not matter for either.

Variable names:

  • Dependent variable (DV) 1—PERFORM (Job performance—continuous)

  • Dependent variable (DV) 2—ABSENCE (Absenteeism—binary)

  • Dependent variable (DV) 3—TIMESABS (Number of occasions absent—discrete)

  • Independent variable (IV) 1—TRAIN (Training provision—continuous; mean 3.42)

  • Independent variable (IV) 2—WKPRES (Work pressure—continuous; mean 2.95)

  • Moderator 1—AUTON (Autonomy—continuous; mean 3.20)

  • Moderator 2—EXPER (Experience—continuous; mean 6.5)

  • Moderator 3—AGE (Age—continuous; mean 43.7)

  • Moderator 4—ROLE (Job role—three levels, scored 1, 2, 3)

*Descriptions of what the commands are doing are shown with asterisks in front of them. SPSS will ignore any commands that begin with an asterisk. Note that the execute commands are not necessary to run any analysis, but commands that do not produce output will not be performed until either a command that does produce output, or an execute command, is run afterwards.

*(1) Syntax to create centered versions of continuous IVs and moderators:

  • compute TRAINC = TRAIN − 3.42.

  • compute WKPRESC = WKPRES − 2.95.

  • compute AUTONC = AUTON − 3.20.

  • compute EXPERC = EXPER − 6.5.

  • compute AGEC = AGE − 43.7.

  • execute.

*(2) Syntax to created standardized versions of continuous IVs and moderators. N.B. the variables created will have the same names as the originals but preceded by a Z.

descriptives TRAIN WKPRES AUTON EXPER AGE /save.

*(3) Syntax to create and test 2-way interaction with continuous moderator. Note that the inclusion of “bcov” ensures that coefficient variances and covariances are included in the output—helpful for testing of simple slopes.

  • compute TRAXAUT = TRAINC*AUTONC.

  • regression /statistics = r coeff cha anova bcov

  •  /dependent = PERFORM

  •  /method = enter TRAINC AUTONC

  •  /method = enter TRAXAUT.

*(4) Syntax for alternative method of testing simple slope: for value of AUTON = 4.10. Test of simple slope is given by significance of TRAINC term in final model.

  • compute AUTONT = AUTON − 4.10.

  • compute TRAXAUTT = TRAINC*AUTONT.

  • regression /statistics = r coeff cha anova bcov

  •  /dependent = PERFORM

  •  /method = enter TRAINC AUTONT

  •  /method = enter TRAXAUTT.

*(5) Syntax for ANCOVA version of 2-way interaction with categorical moderator (NB can involve any combination of continuous and categorical IVs/moderators; categorical variables follow “by” command and continuous variables follow “with” command.

  • glm PERFORM by ROLE with TRAINC

  •  /print = parameter

  •  /design = TRAINC ROLE TRAINC*ROLE.

*(6) Syntax to create and test 3-way interaction with continuous moderators.

  • compute TRAXAUT = TRAINC*AUTONC.

  • compute TRAXEXP = TRAINC*EXPERC.

  • compute AUTXEXP = AUTONC*EXPERC.

  • compute TRXAUXEX = TRAINC*AUTONC*EXPERC.

  • regression /statistics = r coeff cha anova bcov

  •  /dependent = PERFORM

  •  /method = enter TRAINC AUTONC EXPERC TRAXAUT TRAXEXP AUTXEXP

  •  /method = enter TRXAUXEX.

*(7) Syntax to test curvilinear interaction.

  • compute TRAINSQ = TRAINC*TRAINC.

  • compute TRASXAUT = TRAINSQ*AUTONC.

  • regression /statistics = r coeff cha anova bcov

  •  /dependent = PERFORM

  •  /method = enter TRAINC TRAINSQ AUTONC

  •  /method = enter TRAXAUT TRASXAUT.

*(8) Syntax to test for (linear or curvilinear) relationship between IV and DV at particular value of moderator (“simple curve”) at AUTON = 4.10. The simple curve or slope is significant if the second step adds significant variance to the model.

  • compute TRAINSQ = TRAINC*TRAINC.

  • compute AUTONT = AUTON − 4.10.

  • compute TRAXAUTT = TRAINC*AUTONT.

  • compute TRASXAUTT = TRAINSQ*AUTONT.

  • regression /statistics = r coeff cha anova bcov

  •  /dependent = PERFORM

  •  /method = enter AUTONT TRAXAUTT TRASXAUTT

  •  /method = enter TRAINC TRAINSQ.

*(9) Syntax to test for difference between simple curves in a curvilinear three-way interaction. In this example the test is for difference between the curvilinear effect of training provision on job performance at high autonomy/high experience and high autonomy/low experience. High autonomy is defined by AUTON = 4.10. The simple curves are significantly different if the second step adds significant variance to the model.

  • compute TRAINSQ = TRAINC*TRAINC.

  • compute AUTONT = AUTON − 4.10.

  • compute TRAXAUTT = TRAINC*AUTONT.

  • compute TRASXAUTT = TRAINSQ*AUTONT.

  • compute TRAXEXP = TRAINC*EXPERC.

  • compute AUTTXEXP = AUTONT*EXPERC.

  • compute TRXAUTXEX = TRAINC*AUTONT*EXPERC.

  • compute TRSQXAUTXEX = TRAINSQ*AUTONT*EXPERC.

  • regression /statistics = r coeff cha anova bcov

  •  /dependent = PERFORM

  •  /method = enter TRAINC TRAINSQ AUTONT EXPERC TRAXEXP AUTTXEXP TRXAUTXEX TRSQXAUTXEX

  •  /method = enter TRAXAUTT TRASXAUTT.

*(10) Syntax to test 2-way interaction with continuous moderator and binary dependent variable. Note that it is not necessary to create the interaction term separately, but it is still advisable to use centered versions of the IV and moderator.

  • logistic regression variables ABSENCE

  •  /method = enter WKPRESC AGEC WKPRESC*AGEC.

*(11) Syntax to test simple slope of an independent variable (WKPRESC) on binary dependent value (ABSENCE) when the moderator, AGE, is equal to 30. Test of simple slope is given by significance of WKPRESC term.

  • compute AGET = AGE − 30.

  • logistic regression variables ABSENCE

  •  /method = enter WKPRESC AGET WKPRESC*AGET.

*(12) Syntax to test 2-way interaction with continuous moderator and count dependent variable using Poisson regression. For negative binomial alternative use “distribution = negbin” instead.

  • genlin TIMESABS with WKPRESC AGEC WKPRESC*AGEC

  •  /model WKPRESC AGEC WKPRESC*AGEC

  •  distribution = poisson link = log.

*(13) Syntax to create dummy variables for a categorical moderator ROLE.

  • recode ROLE (1 = 1)(2 3 = 0) into ROLE1.

  • recode ROLE (2 = 1)(1 3 = 0) into ROLE2.

  • recode ROLE (3 = 1)(1 2 = 0) into ROLE3.

  • execute.

*(14) Syntax to create and test 2-way interaction with categorical moderator (with three levels: for more levels, add in dummy variables and interaction terms accordingly).

  • compute TRAXRO1 = TRAINC*ROLE1.

  • compute TRAXRO2 = TRAINC*ROLE2.

  • regression /statistics = r coeff cha anova bcov

  •  /dependent = PERFORM

  •  /method = enter TRAINC ROLE1 ROLE2

  •  /method = enter TRAXRO1 TRAXRO2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dawson, J.F. Moderation in Management Research: What, Why, When, and How. J Bus Psychol 29, 1–19 (2014). https://doi.org/10.1007/s10869-013-9308-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10869-013-9308-7

Keywords

Navigation