Skip to main content
Log in

The relationship between resting blood pressure and acute pain sensitivity: effects of chronic pain and alpha-2 adrenergic blockade

  • Published:
Journal of Behavioral Medicine Aims and scope Submit manuscript

Abstract

This study tested for alpha-2 adrenergic mediation of the inverse relationship between resting blood pressure and acute pain sensitivity in healthy individuals. It also replicated limited prior work suggesting this inverse blood pressure/pain association is altered in chronic pain, and provided the first test of whether chronic pain-related changes in alpha-2 adrenergic function contribute to these alterations. Resting blood pressure was assessed in 32 healthy controls and 24 chronic low back pain participants prior to receiving placebo or an intravenous alpha-2 adrenergic receptor antagonist (yohimbine hydrochloride, 0.4 mg/kg) in a randomized crossover design. Participants experienced three acute pain tasks during both sessions. A significant Systolic Blood Pressure × Participant Type × Drug interaction on finger pressure McGill Pain Questionnaire-Sensory ratings (P < .05) reflected significant hyperalgesic effects of yohimbine in chronic pain participants with lower systolic blood pressures (P < .05) but not those with higher systolic pressures, and no significant effects of yohimbine in controls regardless of blood pressure level. A Drug × Systolic Blood Pressure interaction on finger pressure visual analog scale unpleasantness indicated the inverse blood pressure/pain association was significantly stronger under yohimbine relative to placebo (P < .05). Significant Participant Type × Systolic Blood Pressure interactions (P’s < .05) were noted for finger pressure visual analog scale pain intensity and unpleasantness, ischemic pain threshold, and heat pain threshold, reflecting absence or reversal of inverse blood pressure/pain associations in chronic pain participants. Results suggest that blood pressure-related hypoalgesia can occur even when alpha-2 adrenergic systems are blocked. The possibility of upregulated alpha-2 adrenergic inhibitory function in chronic pain patients with lower blood pressure warrants further evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • al’Absi, M., Petersen, K. L., & Wittmers, L. E. (2000). Blood pressure but not parental history for hypertension predicts pain perception in women. Pain, 88, 61–68.

    Article  PubMed  CAS  Google Scholar 

  • Bharucha, A. E., Camilleri, M., Zinsmeister, A. R., & Hanson, R. B. (1997). Adrenergic modulation of human colonic motor and sensory function. The American Journal of Physiology, 273(5 pt 1), G997–1006.

    PubMed  CAS  Google Scholar 

  • Bragdon, E. E., Light, K. C., Costello, N. L., Sigurdsson, A., Bunting, S., Bhalang, K., & Maixner, W. (2002). Group differences in pain modulation: Pain-free women compared to pain-free men and to women with TMD. Pain, 96, 227–237.

    Article  PubMed  Google Scholar 

  • Bruehl, S., Carlson, C. R., & McCubbin, J. A. (1992). The relationship between pain sensitivity and blood pressure in normotensives. Pain, 48, 463–467.

    Article  PubMed  CAS  Google Scholar 

  • Bruehl, S., & Chung, O. Y. (2004). Interactions between the cardiovascular and pain regulatory systems: An updated review of mechanisms and possible alterations in chronic pain. Neuroscience and Biobehavioral Reviews, 28, 395–414.

    Article  PubMed  Google Scholar 

  • Bruehl, S., Chung, O. Y., Jirjis, J. N., & Biridepalli, S. (2005). Prevalence of clinical hypertension in chronic pain patients compared to non-pain general medical patients. The Clinical Journal of Pain, 21, 147–153.

    Article  PubMed  Google Scholar 

  • Bruehl, S., Chung, O. Y., Ward, P., & Johnson, B. (2004). Endogenous opioids and chronic pain intensity: Interactions with level of disability. The Clinical Journal of Pain, 20, 283–292.

    Article  PubMed  Google Scholar 

  • Bruehl, S., Chung, O. Y., Ward, P., Johnson, B., & McCubbin, J. A. (2002). The relationship between resting blood pressure and acute pain sensitivity in healthy normotensives and chronic back pain sufferers: The effects of opioid blockade. Pain, 100, 191–201.

    Article  PubMed  CAS  Google Scholar 

  • Bruehl, S., McCubbin, J. A., & Harden, R. N. (1999). Theoretical review: Altered pain regulatory systems in chronic pain. Neuroscience and Biobehavioral Reviews, 23, 877–890.

    Article  PubMed  CAS  Google Scholar 

  • Budai, D., Harasawa, I., & Fields, H. L. (1998). Midbrain periaqueductal gray (PAG) inhibits nociceptive inputs to sacral dorsal horn nociceptive neurons through alpha-2 adrenergic receptors. Journal of Neurophysiology, 80, 2244–2254.

    PubMed  CAS  Google Scholar 

  • Dao, T. T., Kailasam, M. T., Parmer, R. J., Le, H. V., Le Verge, R., Kennedy, B. P., Ziegler, M. G., Insel, P. A., Wright, F. A., & O’Connor, D. T. (1998). Expression of altered alpha 2 adrenergic phenotypic traits in normotensive humans at genetic risk of hereditary (essential) hypertension. Journal of Hypertension, 16, 779–792.

    Article  PubMed  CAS  Google Scholar 

  • Edwards, R. R., & Fillingim, R. B. (2001). Age-associated differences in responses to noxious stimuli. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 56, M180–M185.

    PubMed  CAS  Google Scholar 

  • Fairbanks, C. A., & Wilcox, G. L. (1999). Spinal antinociceptive synergism between morphine and clonidine persists in mice made acutely or chronically tolerant to morphine. The Journal of Pharmacology and Experimental Therapeutics, 288, 1107–1116.

    PubMed  CAS  Google Scholar 

  • Fillingim, R. B., & Edwards, R. R. (2005). Is self-reported childhood abuse history associated with pain perception among healthy young men and women? The Clinical Journal of Pain, 21, 387–397.

    Article  PubMed  Google Scholar 

  • Fillingim, R. B., & Maixner, W. (1996). The influence of resting blood pressure and gender on pain responses. Psychosomatic Medicine, 58, 326–332.

    PubMed  CAS  Google Scholar 

  • First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. W. (1997). Structured clinical interview for DSM-IV Axis I disorders, clinician version (SCID-CV). Washington, D.C.: American Psychiatric Press, Inc.

    Google Scholar 

  • Forgione, A. G., & Barber, T. X. (1971). A strain gauge pain stimulator. Psychophysiology, 8, 102–106.

    Article  PubMed  CAS  Google Scholar 

  • France, C. R., al’Absi, M., Ring, C., France, J. L., Brose, J., Spaeth, D., Harju, A., Nordehn, G., & Wittmers, L. E. (2005). Assessment of opiate modulation of pain and nociceptive responding in young adults with a parental history of hypertension. Biological Psychology, 70, 168–174.

    Article  PubMed  Google Scholar 

  • Glass, M. J., & Pickel, V. M. (2002). Alpha 2A-adrenergic receptors are present in mu-opioid receptor containing neurons in rat medial nucleus tractus solitarius. Synapse, 43, 208–218.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg, M. R., & Robertson, D. (1983). Yohimbine: A pharmacological probe for study of the alpha-2 adrenoceptor. Pharmacological Reviews, 35, 143–180.

    PubMed  CAS  Google Scholar 

  • Goldstein, D. S., Golczynska, A., Stuhlmuller, J., Holmes, C., Rea, R. F., Grossman, E., & Lenders, J. (1999). A test of the “epinephrine hypothesis” in humans. Hypertension, 33, 36–43.

    PubMed  CAS  Google Scholar 

  • Guthrie, S. K., Hariharan, M., & Grunhaus, L. J. (1990). Yohimbine bioavailability in humans. European Journal of Pharmacology, 39, 409–411.

    Article  CAS  Google Scholar 

  • Jones, S. L. (1991). Descending noradrenergic influences on pain. Progress in Brain Research, 88, 381–394.

    Article  PubMed  CAS  Google Scholar 

  • Le Corre, P., Dollo, G., Chevanne, F., & Le Verge, R. (1999). Biopharmaceutics and metabolism of yohimbine in humans. European Journal of Pharmaceutical Sciences Pharmaceutical, 9, 79–84.

    Article  Google Scholar 

  • Le Verge, R., Le Corre, P., & Chevanne, F. (1992). Determination of yohimbine and its two hyrdroxylated metabolites in humans by high performance liquid chromatography and mass spectral analysis. Journal of Chromatography, 574, 283–292.

    Article  PubMed  Google Scholar 

  • Maixner, W., Fillingim, R., Kincaid, S., Sigurdsson, A., & Harris, M. B. (1997). Relationship between pain sensitivity and resting arterial blood pressure in patients with painful temporomandibular disorders. Psychosomatic Medicine, 59, 503–511.

    PubMed  CAS  Google Scholar 

  • Maixner, W., Touw, K. B., Brody, M. J., Gebhart, G. F., & Long, J. P. (1982). Factors influencing the altered pain perception in the spontaneously hypertensive rat. Brain Research, 237, 137–145.

    Article  PubMed  CAS  Google Scholar 

  • Malcolm, A., Camilleri, M., Kost, L., Burton, D. D., Fett, S. L., & Zinmeister, A. R. (2000). Towards identifying optimal doses for alpha-2 adrenergic modulation of colonic and rectal motor and sensory function. Alimentary Pharmacology & Therapeutics, 14, 783–793.

    Article  CAS  Google Scholar 

  • Maurset, A., Skoglung, L. A., Hustveit, O., Klepstad, P., & Oye, I. (1992). A new version of the ischemic tourniquet pain test. Methods and Findings in Experimental and Clinical Pharmacology, 13, 643–647.

    Google Scholar 

  • McCubbin, J. A., & Bruehl, S. (1994). Do endogenous opioids mediate the relationship between blood pressure and pain sensitivity in normotensives? Pain, 57, 63–67.

    Article  PubMed  CAS  Google Scholar 

  • McCubbin, J. A., Helfer, S. G., Switzer, F. S. III, Galloway, C., & Griffith, W. V. (2006). Opioid analgesia in persons at risk for hypertension. Psychosomatic Medicine, 68, 116–120.

    Article  PubMed  CAS  Google Scholar 

  • Melzack, R. (1987). The short form of the McGill pain Questionnaire. Pain, 30, 191–197.

    Article  PubMed  CAS  Google Scholar 

  • Millan, M. J. (2002). Descending control of pain. Progress in Neurobiology, 66, 355–474.

    Article  PubMed  CAS  Google Scholar 

  • Miller, J. F., & Proudfit, H. K. (1990). Antagonisms of stimulation-produced antinociception from ventrolateral pontine sites by intrathecal administration of alpha-adrenergic antagonists and naloxone. Brain Research, 530, 20–34.

    Article  PubMed  CAS  Google Scholar 

  • Pertovaara, A., Kaupila, T., Jyvasjarvi, E., & Kalso, E. (1991). Involvement of supraspinal and spinal segmental alpha-2-adrenergic mechanisms in the medetomidine-induced antinociception. Neuroscience, 44, 705–714.

    Article  PubMed  CAS  Google Scholar 

  • Randich, A., & Maixner, W. (1984). Interactions between cardiovascular and pain regulatory systems. Neuroscience and Biobehavioral Reviews, 8, 343–367.

    Article  PubMed  CAS  Google Scholar 

  • Saavedra, J. M. (1981). Spontaneously (genetic) hypertensive rats: Naloxone-reversible and propranolol reversible decrease in pain sensitivity. Experientia, 37, 1002–1003.

    Article  PubMed  CAS  Google Scholar 

  • Schobel, H. P., Handwerker, H. O., Schmieder, R. E., Huesser, K., Dominiak, P., & Luft, F. C. (1998). Effects of naloxone on hemodynamic and sympathetic nerve responses to pain in normotensives vs. borderline hypertensive men. Journal of the Autonomic Nervous System, 69, 49–55.

    Article  PubMed  CAS  Google Scholar 

  • Sitsen, J. M., & DeJong, W. (1983). Hypoalgesia in genetically hypertensive rats (SHR) is absent in rats with experimental hypertension. Hypertension, 5, 185–190.

    PubMed  CAS  Google Scholar 

  • Sitsen, J., & DeJong, W. (1984). Observations on pain perception and hypertension in spontaneously hypertensive rats. Clinical and Experimental Hypertension, A6, 1345–1356.

    Article  Google Scholar 

  • Taylor, B. R., Roderick, R. E., & Basbaum, A. I. (2000). Brainstem noradrenergic control of nociception is abnormal in spontaneously hypertensive rats. Neuroscience Letters, 291, 139–142.

    Article  PubMed  CAS  Google Scholar 

  • Thurston, C. L., & Randich, A. (1990). Acute increases in arterial blood pressure produced by occlusion of the abdominal aorta induces antinociception: Peripheral and central substrates. Brain Research, 519, 12–22.

    Article  PubMed  CAS  Google Scholar 

  • Tsukamoto, K., Sved, A. F., Ito, S., Komatsu, K., & Kanmatsuse, K. (2000). Enhanced serotonin-mediated responses in the nucleus tractus solitarius of spontaneously hypertensive rats. Brain Research, 863, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Walker, M. J., Poulos, C. X., & Le, A. D. (1994). Effects of acute selective 5-HT1, 5-HT2, 5-HT3 receptor and alpha 2 adrenoceptor blockade on naloxone-induced antinociception. Psychopharmacology (Berl), 113, 527–533.

    Article  CAS  Google Scholar 

  • Zamir, N., Simantov, R., & Segal, M. (1980). Pain sensitivity and opioid activity in genetically and experimentally hypertensive rats. Brain Research, 184, 299–310.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by NIH Grant NS046694 and GCRC grant M01 RR-00095 from the NCRR/NIH. The authors gratefully acknowledge the contributions of Melissa Chont and the assistance of the research nurses of the Vanderbilt General Clinical Research Center, as well as the technical assistance of Dr. Roger Fillingim regarding the thermal pain stimulus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Bruehl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruehl, S., Chung, O.Y., Diedrich, L. et al. The relationship between resting blood pressure and acute pain sensitivity: effects of chronic pain and alpha-2 adrenergic blockade. J Behav Med 31, 71–80 (2008). https://doi.org/10.1007/s10865-007-9133-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10865-007-9133-4

Keywords

Navigation