Skip to main content

Advertisement

Log in

Spheroid model study comparing the biocompatibility of Biodentine and MTA

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

An Erratum to this article was published on 05 July 2013

Abstract

The primary objective of this study was to assess the biological effects of a new dentine substitute based on Ca3SiO5 (Biodentine™) for use in pulp-capping treatment, on pseudo-odontoblastic (MDPC-23) and pulp (Od-21) cells. The secondary objective was to evaluate the effects of Biodentine and mineral trioxide aggregate (MTA) on gene expression in cultured spheroids. We used the acid phosphatase assay to compare the biocompatibility of Biodentine and MTA. Cell differentiation was investigated by RT-qPCR. We investigated the expression of genes involved in odontogenic differentiation (Runx2), matrix secretion (Col1a1, Spp1) and mineralisation (Alp). ANOVA and PLSD tests were used for data analysis. MDPC-23 cells cultured in the presence of MTA had higher levels of viability than those cultured in the presence of Biodentine and control cells on day 7 (P = 0.0065 and P = 0.0126, respectively). For Od-21 cells, proliferation rates on day 7 were significantly lower in the presence of Biodentine or MTA than for control (P < 0.0001). Col1a1 expression levels were slightly lower in cells cultured in the presence of MTA than in those cultured in the presence of Biodentine and in control cells. Biodentine and MTA may modify the proliferation of pulp cell lines. Their effects may fluctuate over time, depending on the cell line considered. The observed similarity between Biodentine and MTA validates the indication for direct pulp-capping claimed by the manufacturers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Olsson H, Petersson K, Rohlin M. Formation of a hard tissue barrier after pulp cappings in humans. A systematic review. Int Endod J. 2006;39(6):429–42.

    Article  CAS  Google Scholar 

  2. Al-Hiyasat AS, Barrieshi-Nusair KM, Al-Omari MA. The radiographic outcomes of direct pulp-capping procedures performed by dental students: a retrospective study. J Am Dent Assoc. 2006;137(12):1699–705.

    Google Scholar 

  3. Barthel CR, Rosenkranz B, Leuenberg A, Roulet JF. Pulp capping of carious exposures: treatment outcome after 5 and 10 years: a retrospective study. J Endod. 2000;26(9):525–8.

    Article  CAS  Google Scholar 

  4. de Costa CAS, Duarte PT, de Souza PP, Giro EM, Hebling J. Cytotoxic effects and pulpal response caused by a mineral trioxide aggregate formulation and calcium hydroxide. Am J Dent. 2008;21(4):255–61.

    Google Scholar 

  5. Horsted-Bindslev P, Vilkinis V, Sidlauskas A. Direct capping of human pulps with a dentin bonding system or with calcium hydroxide cement. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2003;96(5):591–600.

    Article  Google Scholar 

  6. Nair PN, Duncan HF. Pitt Ford TR, Luder HU. Histological, ultrastructural and quantitative investigations on the response of healthy human pulps to experimental capping with mineral trioxide aggregate: a randomized controlled trial. Int Endod J. 2008;41(2):128–50.

    CAS  Google Scholar 

  7. Ford TRP, Torabinejad M, Abedi HR, Bakland LK, Kariyawasam SP. Using mineral trioxide aggregate as a pulp-capping material. J Am Dent Assoc. 1996;127(10):1491–4.

    CAS  Google Scholar 

  8. Bogen G, Kim JS, Bakland LK. Direct pulp capping with mineral trioxide aggregate: an observational study. J Am Dent Assoc. 2008;139(3):305–15.

    Google Scholar 

  9. Moghaddame-Jafari S, Mantellini M, Botero T, McDonald N, Nör J. Effect of ProRoot MTA on pulp cell apoptosis and proliferation in vitro. J Endod. 2005;31(5):387–91.

    Article  Google Scholar 

  10. Paranjpe A, Zhang H, Johnson JD. Effects of mineral trioxide aggregate on human dental pulp cells after pulp-capping procedures. J Endod. 2010;36(6):1042–7.

    Article  Google Scholar 

  11. Takita T, Hayashi M, Takeichi O, Ogiso B, Suzuki N, Otsuka K, et al. Effect of mineral trioxide aggregate on proliferation of cultured human dental pulp cells. Int Endod J. 2006;39(5):415–22.

    Article  CAS  Google Scholar 

  12. Laurent P, Camps J, De Meo M, Dejou J, About I. Induction of specific cell responses to a Ca(3)SiO(5)-based posterior restorative material. Dent Mater. 2008;24(11):1486–94.

    Article  CAS  Google Scholar 

  13. Laurent P, Camps J, About I. Biodentine (™) induces TGF-beta1 release from human pulp cells and early dental pulp mineralization. Int Endod J. 2012;45(5):439–48.

    Article  CAS  Google Scholar 

  14. Koubi S, Elmerini H, Koubi G, Tassery H, Camps J. Quantitative evaluation by glucose diffusion of microleakage in aged calcium silicate-based open-sandwich restorations. Int J Dent. 2012;. doi:10.1155/2012/105863.

    Google Scholar 

  15. Koubi G, Colon P, Franquin JC, Hartmann A, Richard G, Faure MO, et al. Clinical evaluation of the performance and safety of a new dentine substitute, Biodentine, in the restoration of posterior teeth: a prospective study. Clin Oral Investig. 2013;17(1):243–9.

    Article  Google Scholar 

  16. Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA. Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol. 2010;148(1):3–15.

    Article  CAS  Google Scholar 

  17. Kunz-Schughart LA, Freyer JP, Hofstaedter F, Ebner R. The use of 3D cultures for high-throughput screening: the multicellular spheroid model. J Biomol Screen. 2004;9(4):273–85.

    Article  CAS  Google Scholar 

  18. Shield K, Ackland ML, Ahmed N, Rice GE. Multicellular spheroids in ovarian cancer metastases: biology and pathology. Gynecol Oncol. 2009;113(1):143–8.

    Article  Google Scholar 

  19. Kelm JM, Djonov V, Ittner LM, Fluri D, Born W, Hoerstrup SP, et al. Design of custom-shaped vascularized tissues using microtissue spheroids as minimal building units. Tissue Eng. 2006;12(8):2151–60.

    Article  Google Scholar 

  20. Oudar O. Spheroids: relation between tumour and endothelial cells. Crit Rev Oncol Hematol. 2000;36(2):99–106.

    Article  CAS  Google Scholar 

  21. Pampaloni F, Stelzer E. Three-dimensional cell cultures in toxicology. Biotechnol Genet Eng Rev. 2010;26:117–36.

    Article  CAS  Google Scholar 

  22. Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR. Organ printing: tissue spheroids as building blocks. Biomaterials. 2009;30(12):2164–74.

    Article  CAS  Google Scholar 

  23. Hanks CT, Sun ZL, Fang DN, Edwards CA, Wataha JC, Ritchie HH, et al. Cloned 3T6 cell line from CD-1 mouse fetal molar dental papillae. Connect Tissue Res. 1998;37(3–4):233–49.

    Article  CAS  Google Scholar 

  24. Pang JL, Wu BL, He WX, Zhang YQ, Zhao HP, Xie ZH. Effect of antisense oligonucleotide against mouse dentine matrix protein 1 on mineralization ability and calcium ions metabolism in odontoblast-like cell line MDPC-23. Int Endod J. 2006;39(7):527–37.

    Article  CAS  Google Scholar 

  25. Alno N, Jegoux F, Pellen-Mussi P, Tricot-Doleux S, Oudadesse H, Cathelineau G, et al. Development of a three-dimensional model for rapid evaluation of bone substitutes in vitro: effect of the 45S5 bioglass. J Biomed Mater Res A. 2010;95(1):137–45.

    Google Scholar 

  26. Friedrich J, Eder W, Castaneda J, Doss M, Huber E, Ebner R, et al. A reliable tool to determine cell viability in complex 3D culture: the acid phosphatase assay. J Biomol Screen. 2007;12(7):925–37.

    Article  CAS  Google Scholar 

  27. Koulaouzidou EA, Economides N, Beltes P, Geromichalos G, Papazisis K. In vitro evaluation of the cytotoxicity of ProRoot MTA and MTA Angelus. J Oral Sci. 2008;50(4):397–402.

    Article  Google Scholar 

  28. Zeferino EG, Bueno CE, Oyama LM, Ribeiro DA. Ex vivo assessment of genotoxicity and cytotoxicity in murine fibroblasts exposed to white MTA or white Portland cement with 15 % bismuth oxide. Int Endod J. 2010;43(10):843–8.

    Article  CAS  Google Scholar 

  29. Rodriguez-Enriquez S, Gallardo-Perez JC, Aviles-Salas A, Marin-Hernandez A, Carreno-Fuentes L, Maldonado-Lagunas V, et al. Energy metabolism transition in multi-cellular human tumor spheroids. J Cell Physiol. 2008;216(1):189–97.

    Article  CAS  Google Scholar 

  30. Lee SK, Lee SK, Lee SI, Park JH, Jang JH, Kim HW, et al. Effect of calcium phosphate cements on growth and odontoblastic differentiation in human dental pulp cells. J Endod. 2010;36(9):1537–42.

    Article  Google Scholar 

  31. De Deus G, Ximenes R, Gurgel-Filho ED, Plotkowski MC, Coutinho-Filho T. Cytotoxicity of MTA and Portland cement on human ECV 304 endothelial cells. Int Endod J. 2005;38(9):604–9.

    Article  Google Scholar 

  32. Howes AL, Chiang GG, Lang ES, Ho CB, Powis G, Vuori K, et al. The phosphatidylinositol 3-kinase inhibitor, PX-866, is a potent inhibitor of cancer cell motility and growth in three-dimensional cultures. Mol Cancer Ther. 2007;6(9):2505–14.

    Article  CAS  Google Scholar 

  33. Paranjpe A, Smoot T, Zhang H, Johnson JD. Direct contact with mineral trioxide aggregate activates and differentiates human dental pulp cells. J Endod. 2011;37(12):1691–5.

    Article  Google Scholar 

  34. Zhao X, He W, Song Z, Tong Z, Li S, Ni L. Mineral trioxide aggregate promotes odontoblastic differentiation via mitogen-activated protein kinase pathway in human dental pulp stem cells. Mol Biol Rep. 2012;39(1):215–20.

    Article  CAS  Google Scholar 

  35. Zanini M, Sautier JM, Berdal A, Simon S. Biodentine induces immortalized murine pulp cell differentiation into odontoblast-like cells and stimulates biomineralization. J Endod. 2012;38(9):1220–6.

    Article  Google Scholar 

  36. Peng W, Liu W, Zhai W, Jiang L, Li L, Chang J, et al. Effect of tricalcium silicate on the proliferation and odontogenic differentiation of human dental pulp cells. J Endod. 2011;37(9):1240–6.

    Article  Google Scholar 

  37. Komori T. Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell Tissue Res. 2010;339(1):189–95.

    Article  CAS  Google Scholar 

  38. Helder MN, Bronckers AL, Woltgens JH. Dissimilar expression patterns for the extracellular matrix proteins osteopontin (OPN) and collagen type I in dental tissues and alveolar bone of the neonatal rat. Matrix. 1993;13(5):415–25.

    Article  CAS  Google Scholar 

  39. Linde A, Goldberg M. Dentinogenesis. Crit Rev Oral Biol Med. 1993;4(5):679–728.

    CAS  Google Scholar 

  40. Yokose S, Kadokura H, Tajima Y, Fujieda K, Katayama I, Matsuoka T, et al. Establishment and characterization of a culture system for enzymatically released rat dental pulp cells. Calcif Tissue Int. 2000;66(2):139–44.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. J.E. Nör and Dr. S. Simon for providing the cell lines used in this study. The authors wish to thank Pr. P. Colon and Pr. J-M. Vulcain for their assistance and wise advice. We thank Septodont (France) and Dentsply Maillefer (France) for providing the biomaterials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthieu Pérard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérard, M., Le Clerc, J., Meary, F. et al. Spheroid model study comparing the biocompatibility of Biodentine and MTA. J Mater Sci: Mater Med 24, 1527–1534 (2013). https://doi.org/10.1007/s10856-013-4908-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-4908-3

Keywords

Navigation