Skip to main content

Advertisement

Log in

Optimizing defibrillation waveforms for ICDs

  • REVIEW
  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

While no simple electrical descriptor provides a good measure of defibrillation efficacy, the waveform parameters that most directly influence defibrillation are voltage and duration. Voltage is a critical parameter for defibrillation because its spatial derivative defines the electrical field that interacts with the heart. Similarly, waveform duration is a critical parameter because the shock interacts with the heart for the duration of the waveform. Shock energy is the most often cited metric of shock strength and an ICD’s capacity to defibrillate, but it is not a direct measure of shock effectiveness. Despite the physiological complexities of defibrillation, a simple approach in which the heart is modeled as passive resistor–capacitor (RC) network has proved useful for predicting efficient defibrillation waveforms. The model makes two assumptions: (1) The goal of both a monophasic shock and the first phase of a biphasic shock is to maximize the voltage change in the membrane at the end of the shock for a given stored energy. (2) The goal of the second phase of a biphasic shock is to discharge the membrane back to the zero potential, removing the charge deposited by the first phase. This model predicts that the optimal waveform rises in an exponential upward curve, but such an ascending waveform is difficult to generate efficiently. ICDs use electronically efficient capacitive-discharge waveforms, which require truncation for effective defibrillation. Even with optimal truncation, capacitive-discharge waveforms require more voltage and energy to achieve the same membrane voltage than do square waves and ascending waveforms. In ICDs, the value of the shock output capacitance is a key intermediary in establishing the relationship between stored energy—the key determinant of ICD size—and waveform voltage as a function of time, the key determinant of defibrillation efficacy. The RC model predicts that, for capacitive-discharge waveforms, stored energy is minimized when the ICD’s system time constant τ s equals the cell membrane time constant τ m, where τ s is the product of the output capacitance and the resistance of the defibrillation pathway. Since the goal of phase two is to reverse the membrane charging effect of phase one, there is no advantage to additional waveform phases. The voltages and capacitances used in commercial ICDs vary widely, resulting in substantial disparities in waveform parameters. The development of present biphasic waveforms in the 1990s resulted in marked improvements in defibrillation efficacy. It is unlikely that substantial improvement in defibrillation efficacy will be achieved without radical changes in waveform design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Denman, R. A., Umesan, C., Martin, P. T., Forbes, R. N., Kroll, M. W., Anskey, E. J., et al. (2006). Benefit of millisecond waveform durations for patients with high defibrillation thresholds. Heart Rhythm, 3, 536–541.

    Article  PubMed  Google Scholar 

  2. White, J. B., Walcott, G. P., Wayland, J. L., Jr., Smith, W. M., & Ideker, R. E. (1999). Predicting the relative efficacy of shock waveforms for transthoracic defibrillation in dogs. Annals of Emergency Medicine, 34, 309–320.

    Article  PubMed  CAS  Google Scholar 

  3. Mehdirad, A. A., Love, C. J., Stanton, M. S., Strickberger, S. A., Duncan, J. L., & Kroll, M. W. (1999). Preliminary clinical results of a biphasic waveform and an RV lead system. Pacing and Clinical Electrophysiology, 22, 594–599.

    Article  PubMed  CAS  Google Scholar 

  4. Schauerte, P., Schondube, F. A., Grossmann, M., Dorge, H., Stein, F., Dohmen, B., et al. (1998). Influence of phase duration of biphasic waveforms on defibrillation energy requirements with a 70-microF capacitance. Circulation, 97, 2073–2078.

    PubMed  CAS  Google Scholar 

  5. Walcott, G. P., Walker, R. G., Cates, A. W., Krassowska, W., Smith, W. M., & Ideker, R. E. (1995). Choosing the optimal monophasic and biphasic waveforms for ventricular defibrillation. Journal of Cardiovascular Electrophysiology, 6, 737–750.

    Article  PubMed  CAS  Google Scholar 

  6. Sharma, A. D., Fain, E., O’Neill, P. G., Skadsen, A., Damle, R., Baker, J., et al. (2004). Shock on T versus direct current voltage for induction of ventricular fibrillation: A randomized prospective comparison. Pacing and Clinical Electrophysiology, 27, 89–94.

    Article  PubMed  Google Scholar 

  7. Mehdirad, A. A., Stohr, E. C., Love, C. J., Nelson, S. D., & Schaal, S. F. (1999). Implantable defibrillators impedance measurement using pacing pulses versus shock delivery with intact and modified high voltage lead system. Pacing and Clinical Electrophysiology, 22, 437–441.

    Article  PubMed  CAS  Google Scholar 

  8. Pendekanti, R., Henriquez, C., Tomassoni, G., Miner, W., Fain, E., Hoffmann, D., et al. (1997). Surface coverage effects on defibrillation impedance for transvenous electrodes. Annals of Biomedical Engineering, 25, 739–746.

    PubMed  CAS  Google Scholar 

  9. Olsovsky, M. R., Shorofsky, S. R., & Gold, M. R. (1999). The effect of shock configuration and delivered energy on defibrillation impedance. Pacing and Clinical Electrophysiology, 22, 165–168.

    Article  PubMed  CAS  Google Scholar 

  10. Weiss, D. N., Shorofsky, S. R., Peters, R. W., & Gold, M. R. (1998). The effect of delivered energy on defibrillation shock impedance. Journal of Interventional Cardiac Electrophysiology, 2, 273–277.

    Article  PubMed  CAS  Google Scholar 

  11. Kontos, M. C., Ellenbogen, K. A., Wood, M. A., Damiano, Jr., R. J., Akosah, K. O., Nixon, J. V., et al. (1997). Factors associated with elevated impedance with a nonthoracotomy defibrillation lead system. American Journal of Cardiology, 79, 48–52.

    Article  PubMed  CAS  Google Scholar 

  12. Schwartzman, D., Hull, M. L., Callans, D. J., Gottlieb, C. D., & Marchlinski, F. E. (1996). Serial defibrillation lead impedance in patients with epicardial and nonthoracotomy lead systems. Journal of Cardiovascular Electrophysiology, 7, 697–703.

    Article  PubMed  CAS  Google Scholar 

  13. Iskos, D., Lock, K., Lurie, K. G., Fahy, G. J., Petersen-Stejskal, S., & Benditt, D. G. (1998). Submuscular versus subcutaneous pectoral implantation of cardioverter-defibrillators: Effect on high voltage pathway impedance and defibrillation efficacy. Journal of Interventional Cardiac Electrophysiology, 2, 47–52.

    Article  PubMed  CAS  Google Scholar 

  14. Swerdlow, C., Kass, R., Hwang, C., Gang, E., Chen, P., & Peter, C. (1994). Effect of voltage and respiration on impedance in nonthoracotomy defibrillation pathways. American Journal of Cardiology, 73, 688–692.

    Article  PubMed  CAS  Google Scholar 

  15. Prevost, J., & Batelli, F. (1900). Quelques effets des decharges electriques sur le coeur des mammiferes. Journal de Physiologie et de Pathologie Generale, 2, 40–52.

    Google Scholar 

  16. Peleska, B. (1957). Transthoracic & direct defibrillation. Rozhledy v Chirurgii, 36, 731–755.

    PubMed  CAS  Google Scholar 

  17. Schuder, J. C., Stoeckle, H., West, J. A., & Keskar, P. Y. (1971). Transthoracic ventricular defibrillation in the dog with truncated exponential stimuli. IEEE Transactions on Biomedical Engineering BME, 18, 410–415.

    CAS  Google Scholar 

  18. Feeser, S. A., Tang, A. S., Kavanagh, K. M., Rollins, D. L., Smith, W. M., Wolf, P. D., et al. (1990). Strength–duration and probability of success curves for defibrillation with biphasic waveforms. Circulation, 82, 2128–2141.

    PubMed  CAS  Google Scholar 

  19. Dixon, E. G., Tang, A. S., Wolf, P. D., Meador, J. T., Fine, M. J., Calfee, R. V., et al. (1987). Improved defibrillation thresholds with large contoured epicardial electrodes and biphasic waveforms. Circulation, 76, 1176–1184.

    PubMed  CAS  Google Scholar 

  20. Tang, A., Yabe, S., Wharton, J., Dolker, M., Smith, W., & Ideker, R. (1989). Ventricular defibrillation using biphasic waveforms: The importance of phasic defibrillation. Journal of the American College of Cardiology, 13, 207–214.

    Article  PubMed  CAS  Google Scholar 

  21. Parler, S. (2007). Heating in aluminum electrolytic strobe and photoflash capacitors. Cornell Dubelier (Available online at http://www.cde.com).

  22. Malkin, R. A., Guan, D., & Wikswo, J. P. (2006). Experimental evidence of improved transthoracic defibrillation with electroporation-enhancing pulses. IEEE Transactions on Biomedical Engineering, 53, 1901–1910.

    Article  PubMed  Google Scholar 

  23. Blair, H. (1932). On the intensity–time relations for stimulation by electric currents, I. Journal of General Physiology, 15, 709–729.

    Article  PubMed  CAS  Google Scholar 

  24. Blair, H. (1932). On the intensity–time relations for stimulation by electric currents, II. Journal of General Physiology, 15, 731–755.

    Article  PubMed  CAS  Google Scholar 

  25. Cleland, B. (1996). A conceptual basis for defibrillation waveforms. Pacing and Clinical Electrophysiology, 19, 1186–1195.

    Article  PubMed  CAS  Google Scholar 

  26. Fishler, M. G. (2000). Theoretical predictions of the optimal monophasic and biphasic defibrillation waveshapes. IEEE Transactions on Biomedical Engineering, 47, 59–67.

    Article  PubMed  CAS  Google Scholar 

  27. Kroll, M. W. (1993). A minimal model of the monophasic defibrillation pulse. Pacing and Clinical Electrophysiology, 16, 769–777.

    Article  PubMed  CAS  Google Scholar 

  28. Kroll, M. W. (1994). A minimal model of the single capacitor biphasic defibrillation waveform. Pacing and Clinical Electrophysiology, 17, 1782–1792.

    Article  PubMed  CAS  Google Scholar 

  29. Swerdlow, C., Fan, W., & Brewer, J. (1996). Charge-burping theory correctly predicts optimal ratios of phase duration for biphasic defibrillation waveforms. Circulation, 94, 2278–2284.

    PubMed  CAS  Google Scholar 

  30. Dillon, S. M., & Kwaku, K. F. (1998). Progressive depolarization: A unified hypothesis for defibrillation and fibrillation induction by shocks. Journal of Cardiovascular Electrophysiology, 9, 529–552.

    Article  PubMed  CAS  Google Scholar 

  31. Chen, P.-S., Wolf, P. D., & Ideker, R. E. (1991). The mechanism of cardiac defibrillation: A different point of view. Circulation, 84, 913–919.

    PubMed  CAS  Google Scholar 

  32. Cheng, Y., Mowrey, K. A., Van Wagoner, D. R., Tchou, P. J., & Efimov, I. R. (1999). Virtual electrode-induced reexcitation: A mechanism of defibrillation. Circulation Research, 85, 1056–1066.

    PubMed  CAS  Google Scholar 

  33. Efimov, I. R., Cheng, Y., Yamanouchi, Y., & Tchou, P. J. (2000). Direct evidence of the role of virtual electrode-induced phase singularity in success and failure of defibrillation. Journal of Cardiovascular Electrophysiology, 11, 861–868.

    Article  PubMed  CAS  Google Scholar 

  34. Hodgkin, A. (1938). The subthreshold potentials in a crustacean nerve fiber. Proceedings of the Royal Society of London. Series B, Biological Science, 126, 87–121.

    Article  Google Scholar 

  35. Kao, C. Y., & Hoffman, B. F. (1958). Graded and decremental response in heart muscle fibers. American Journal of Physiology, 194, 187–196.

    PubMed  CAS  Google Scholar 

  36. Krassowska, W., Cabo, C., Knisley, S. B., & Ideker, R. E. (1992). Propagation versus delayed activation during field stimulation of cardiac muscle. Pacing and Clinical Electrophysiology, 15, 197–210.

    Article  PubMed  CAS  Google Scholar 

  37. Tovar, O., & Tung, L. (1991). Electroporation of cardiac cell membranes with monophasic or biphasic rectangular pulses. Pacing and Clinical Electrophysiology, 14, 1887–1892.

    Article  PubMed  CAS  Google Scholar 

  38. Jones, J. L., & Jones, R. E. (1983). Improved defibrillator waveform safety factor with biphasic waveforms. American Journal of Physiology, 245, H60–H65.

    PubMed  CAS  Google Scholar 

  39. Jones, J. L., & Jones, R. E. (1984). Decreased defibrillator-induced dysfunction with biphasic rectangular waveforms. American Journal of Physiology, 247, H792–H796.

    PubMed  CAS  Google Scholar 

  40. Anderson, C., Trayanova, N., & Skouibine, K. (2000). Termination of spiral waves with biphasic shocks: Role of virtual electrode polarization. Journal of Cardiovascular Electrophysiology, 11, 1386–1396.

    Article  PubMed  CAS  Google Scholar 

  41. Behrens, S., Li, C., Kirchhof, P., Fabritz, F. L., & Franz, M. R. (1996). Reduced arrhythmogenicity of biphasic versus monophasic T-wave shocks. Implications for defibrillation efficacy. Circulation, 94, 1974–1980.

    PubMed  CAS  Google Scholar 

  42. Efimov, I. R., Cheng, Y., Van Wagoner, D. R., Mazgalev, T., & Tchou, P. J. (1998). Virtual electrode-induced phase singularity: A basic mechanism of defibrillation failure. Circulation Research, 82, 918–925.

    PubMed  CAS  Google Scholar 

  43. Efimov, I. R., Cheng, Y. N., Biermann, M., Van Wagoner, D. R., Mazgalev, T. N., & Tchou, P. J. (1997). Transmembrane voltage changes produced by real and virtual electrodes during monophasic defibrillation shock delivered by an implantable electrode. Journal of Cardiovascular Electrophysiology, 8, 1031–1045.

    Article  PubMed  CAS  Google Scholar 

  44. Schauerte, P. N., Ziegert, K., Waldmann, M., Schondube, F. A., Birkenhauer, F., Mischke, K., et al. (1999). Effect of biphasic shock duration on defibrillation threshold with different electrode configurations and phase 2 capacitances: Prediction by upper-limit-of-vulnerability determination. Circulation, 99, 1516–1522.

    PubMed  CAS  Google Scholar 

  45. Mouchawar, G., Kroll, M., Val-Mejias, J. E., Schwartzman, D., McKenzie, J., Fitzgerald, D., et al. (2000). ICD waveform optimization: A randomized, prospective, pair-sampled multicenter study. Pacing and Clinical Electrophysiology, 23, 1992–1995.

    PubMed  CAS  Google Scholar 

  46. Shorofsky, S. R., Rashba, E., Havel, W., Belk, P., Degroot, P., Swerdlow, C., et al. (2005). Improved defibrillation efficacy with an ascending ramp waveform in humans. Heart Rhythm, 2, 388–394.

    Article  PubMed  Google Scholar 

  47. Kroll, M., Lehmann, M., & Tchou, P. (1996). Defining the defibrillation dosage. In M. Kroll & M. Lehmann (Eds.), Implantable cardioverter-defibrillator therapy: The engineering-clinical interface (pp. 63–88). Norwell, MA: Kluwer.

    Google Scholar 

  48. Hillsley, R., Walker, R., Swanson, D., Rollins, D., Wolf, P., & Ideker, R. (1993). Is the second phase of a biphasic waveform the defibrillating phase? Pacing and Clinical Electrophysiology, 16, 1402–1411.

    Article  Google Scholar 

  49. Hoorweg, J. (1892). Condensatorentladung und Auseinanderetzung mit du Bois–Reymond. Pfuger’s Archiv fur Gesamte Physiologie, 52, 87–108.

    Article  Google Scholar 

  50. Weiss, G. (1901). Sur la possibilite’ de rendre comparable entre eux les appareils survant a l’excitation electrique. Archives Italiennes de Biologie, 35, 413–446.

    Google Scholar 

  51. Bourland, J. D., Tacker, W. A., & Geddes, L. A. (1978). Strength duration curves for trapezoidal waveforms of various tilts for transchest defibrillation in animals. Medical Instrumentation, 12, 38–41.

    PubMed  CAS  Google Scholar 

  52. Gold, J., Schuder, J., Stoeckle, H., Granberg, T., Hamdani, S., & Rychlewski, J. (1977). Transthoracic ventricular defibrillation in the 100 kg calf with unidirectional rectangular pulses. Circulation, 56, 745.

    PubMed  CAS  Google Scholar 

  53. Wessale, J., Bourland, J., Tacker, W., & Geddes, L. (1980). Bipolar catheter defibrillation in dogs using trapezoidal waveforms of various tilts. Journal of Electrocardiology, 13, 359–366.

    Article  PubMed  CAS  Google Scholar 

  54. Geddes, L. A., Niebauer, M. J., Babbs, C. F., & Bourland, J. D. (1985). Fundamental criteria underlying the efficacy and safety of defibrillating current waveforms. Medical & Biological Engineering & Computing, 23, 122–130.

    Article  CAS  Google Scholar 

  55. Niebauer, M. J., Babbs, C. F., Geddes, L. A., & Bourland, J. D. (1983). Efficacy and safety of defibrillation with rectangular waves of 2- to 20-milliseconds duration. Critical Care Medicine, 11, 95–98.

    Article  PubMed  CAS  Google Scholar 

  56. Swerdlow, C. D., Brewer, J. E., Kass, R. M., & Kroll, M. W. (1997). Application of models of defibrillation to human defibrillation data: Implications for optimizing implantable defibrillator capacitance. Circulation, 96, 2813–2822.

    PubMed  CAS  Google Scholar 

  57. Shorofsky, S., Rashba, E., DeGroot, P., Havel, W., Mugglin, A., & Gold, M. (2002). Is the membrane time constant for defibrillation independent of the waveform? Pacing and Clinical Electrophysiology, 24, 620 (abstract).

    Google Scholar 

  58. Gold, M. R., & Shorofsky, S. R. (1997). Strength–duration relationship for human transvenous defibrillation. Circulation, 96, 3517–3520.

    PubMed  CAS  Google Scholar 

  59. Hahn, S., Heil, J., Lin, Y., Derfus, D., & Lang, D. (1994). Improved defibrillation with small capacitance and optimized biphasic waveforms. Circulation, 90, I–175.

    Google Scholar 

  60. Jung, W., Moosdorf, R., Korte, T., Wolpert, C., Spehl, S., Bauer, T., et al. (1994). Effect of capacitance on the defibrillation threshold in patients using a new unipolar defibrillation system. Circulation, 90(4), I–229.

    Google Scholar 

  61. Rist, K., Tchou, P. J., Mowrey, K., Kroll, M. W., & Brewer, J. E. (1994). Smaller capacitors improve the biphasic waveform. Journal of Cardiovascular Electrophysiology, 5, 771–776.

    Article  PubMed  CAS  Google Scholar 

  62. Leonelli, F. M., Kroll, M. W., & Brewer, J. E. (1995). Defibrillation thresholds are lower with smaller storage capacitors. Pacing and Clinical Electrophysiology, 18, 1661–1665.

    PubMed  CAS  Google Scholar 

  63. Swerdlow, C. D., Brewer, J. E., Kass, R. M., & Kroll, M. (1997). Estimation of optimal ICD capacitance from human strength–duration data. Journal of the American College of Cardiology.

  64. Swerdlow, C., Kass, R., Hwang, C., Chen, P.-S., & Raissi, S. (1994). Effect of capacitor size and pathway resistance on defibrillation threshold for implantable defibrillators. Circulation, 90, 1840–1846.

    PubMed  CAS  Google Scholar 

  65. Sticherling, C., Klingenheben, T., Cameron, D., & Hohnloser, S. H. (1998). Worldwide clinical experience with a down-sized active can implantable cardioverter defibrillator in 162 consecutive patients. Worldwide 7221 ICD investigators. Pacing and Clinical Electrophysiology, 21, 1778–1783.

    Article  PubMed  CAS  Google Scholar 

  66. Thammanomai, A., Sweeney, M., & Eisenberg, S. (2006). A comparison of the output characteristics of several implantable cardioverter defibrillators. Heart Rhythm, 3(9), 1053–1059.

    Article  PubMed  Google Scholar 

  67. Yamanouchi, Y., Brewer, J. E., Mowrey, K. A., Donohoo, A. M., Wilkoff, B. L., & Tchou, P. J. (1998). Optimal small-capacitor biphasic waveform for external defibrillation: Influence of phase-1 tilt and phase-2 voltage. Circulation, 98, 2487–2493.

    PubMed  CAS  Google Scholar 

  68. Malkin, R. A. (2002). Large sample test of defibrillation waveform sensitivity. Journal of Cardiovascular Electrophysiology, 13, 361–370.

    Article  PubMed  Google Scholar 

  69. Keane, D., Aweh, N., Hynes, B., Sheahan, R., Cripps, T., Bashir, Y., et al. (2007). Achieving sufficient safety margins with fixed duration waveforms and the use of multiple time constants. Pacing and Clinical Electrophysiology, 2007 May;30(5): 596–602.

    Article  Google Scholar 

  70. Cheng, Y., Mowrey, K. A., Nikolski, V., Tchou, P. J., & Efimov, I. R. (2002). Mechanisms of shock-induced arrhythmogenesis during acute global ischemia. American Journal of Physiology. Heart and Circulatory Physiology, 282, H2141–H2151.

    PubMed  CAS  Google Scholar 

  71. Natarajan, S., Henthorn, R., Burroughs, J., Esberg, D., Zweibel, S., Ross, T., et al. (2007). Fixed duration “tuned” defibrillation waveforms outperform fixed 50/50% tilt defibrillation waveforms: A randomized, prospective, pair-sampled multicenter study. Pacing and Clinical Electrophysiology (in press).

  72. Sweeney, M. O., Natale, A., Volosin, K. J., Swerdlow, C. D., Baker, J. H., & Degroot, P. (2001). Prospective randomized comparison of 50%/50% versus 65%/65% tilt biphasic waveform on defibrillation in humans. Pacing and Clinical Electrophysiology, 24, 60–65.

    Article  PubMed  CAS  Google Scholar 

  73. Kroll, M. W., Efimov, I. R., & Tchou, P. J. (2006). Present understanding of shock polarity for internal defibrillation: The obvious and non-obvious clinical implications. Pacing and Clinical Electrophysiology, 29, 885–891.

    Article  PubMed  Google Scholar 

  74. Swerdlow, C., Ahern, T., & Chen, P.-S. (1996). Comparative reproducibility of defibrillation threshold and upper limit of vulnerability. Pacing and Clinical Electrophysiology, 19, 2103–2111.

    Article  PubMed  CAS  Google Scholar 

  75. Yamanouchi, Y., Cheng, Y., Tchou, P. J., & Efimov, I. R. (2001). The mechanisms of the vulnerable window: The role of virtual electrodes and shock polarity. Canadian Journal of Physiology and Pharmacology, 79, 25–33.

    Article  PubMed  CAS  Google Scholar 

  76. Strickberger, S. A., Daoud, E., Goyal, R., Chan, K. K., Bogun, F., Castellani, M., et al. (1996). Prospective randomized comparison of anodal monophasic shocks versus biphasic cathodal shocks on defibrillation energy requirements. American Heart Journal, 131, 961–965.

    Article  PubMed  CAS  Google Scholar 

  77. Strickberger, S. A., Hummel, J. D., Horwood, L. E., Jentzer, J., Daoud, E., Niebauer, M., et al. (1994). Effect of shock polarity on ventricular defibrillation threshold using a transvenous lead system. Journal of the American College of Cardiology, 24, 1069–1072.

    Article  PubMed  CAS  Google Scholar 

  78. Mowrey, K. A., Cheng, Y., Tchou, P. J., & Efimov, R. (2002). Kinetics of defibrillation shock-induced response: Design implications for the optimal defibrillation waveform. Europace, 4, 27–39.

    Article  PubMed  CAS  Google Scholar 

  79. Tomassoni, G., Newby, K., Deshpande, S., Axtell, K., Sra, J., Akhtar, M., et al. (1997). Defibrillation efficacy of commercially available biphasic impulses in humans. Importance of negative-phase peak voltage. Circulation, 95, 1822–1826.

    PubMed  CAS  Google Scholar 

  80. Peleska, B. (1963). Cardiac arrhythmias following condenser discharges and their dependence upon strength of current and phase of cardiac cycle. Circulation Research, 13, 21–32.

    PubMed  CAS  Google Scholar 

  81. Nikolski, V. P., & Efimov, I. R. (2005). Electroporation of the heart. Europace, 7(Suppl 2), 146–154.

    Article  PubMed  Google Scholar 

  82. Jones, D. L., Klein, G. J., Guiraudon, G. M., Sharma, A. D., Kallok, M. J., Bourland, J. D., et al. (1986). Internal cardiac defibrillation in man: Pronounced improvement with sequential pulse delivery to two different lead orientations. Circulation, 73, 484–491.

    PubMed  CAS  Google Scholar 

  83. Russo, A. M., Sauer, W., Gerstenfeld, E. P., Hsia, H. H., Lin, D., Cooper, J. M., et al. (2005). Defibrillation threshold testing: Is it really necessary at the time of implantable cardioverter-defibrillator insertion? Heart Rhythm, 2, 456–461.

    Article  PubMed  Google Scholar 

  84. Shukla, H. H., Flaker, G. C., Jayam, V., & Roberts, D. (2003). High defibrillation thresholds in transvenous biphasic implantable defibrillators: Clinical predictors and prognostic implications. Pacing and Clinical Electrophysiology, 26, 44–48.

    Article  PubMed  Google Scholar 

  85. Anderson, K. P. (2005). Sudden cardiac death unresponsive to implantable defibrillator therapy: An urgent target for clinicians, industry and government. Journal of Interventional Cardiac Electrophysiology, 14, 71–78.

    Article  PubMed  Google Scholar 

  86. Mitchell, L. B., Pineda, E. A., Titus, J. L., Bartosch, P. M., & Benditt, D. G. (2002). Sudden death in patients with implantable cardioverter defibrillators: The importance of post-shock electromechanical dissociation. Journal of the American College of Cardiology, 39, 1323–1328.

    Article  PubMed  Google Scholar 

  87. Poole, J., Johnson, G., Callans, D., Raitt, M., Yee, R., Reddy, R., et al. (2004). Analysis of implantable defibrillator shock electrograms in the sudden cardiac death-heart failure trial. Heart Rhythm, 1, S178 (abstract).

    Google Scholar 

  88. Tokano, T., Bach, D., Chang, J., Davis, J., Souza, J. J., Zivin, A., et al. (1998). Effect of ventricular shock strength on cardiac hemodynamics. Journal of Cardiovascular Electrophysiology, 9, 791–797.

    Article  PubMed  CAS  Google Scholar 

  89. Holmes, H., Bourland, J., Tacker, Jr., W., & Geddes, L. (1980). Hemodynamic responses to two defibrillating trapezoidal waveforms. Medical Instrumentation, 14, 47–50.

    PubMed  CAS  Google Scholar 

  90. Boriani, G., Biffi, M., Silvestri, P., Martignani, C., Valzania, C., Diemberger, I., et al. (2005). Mechanisms of pain associated with internal defibrillation shocks: Results of a randomized study of shock waveform. Heart Rhythm, 2, 708–713.

    Article  PubMed  Google Scholar 

  91. Boriani, G., Kroll, M., Biffi, M., Silvestri, P., Martignani, C., Valzania, C., et al. (2007). Plateau waveform shape allows a higher patient shock energy tolerance. Journal of Cardiovascular Electrophysiology, 18 (in press).

  92. Seidl, K., Denman, R. A., Moulder, J. C., Mouchawar, G., Stoeppler, C., Becker, T., et al. (2006). Stepped defibrillation waveform is substantially more efficient than the 50/50% tilt biphasic. Heart Rhythm, 3, 1406–1411.

    Article  PubMed  Google Scholar 

  93. Sweeney, M. O., Wathen, M. S., Volosin, K., Abdalla, I., DeGroot, P. J., Otterness, M. F., et al. (2005). Appropriate and inappropriate ventricular therapies, quality of life, and mortality among primary and secondary prevention implantable cardioverter defibrillator patients: Results from the Pacing Fast VT REduces Shock ThErapies (PainFREE Rx II) trial. Circulation, 111, 2898–2905.

    Article  PubMed  CAS  Google Scholar 

  94. Swerdlow, C. D. (2006). ICD waveforms: What really matters? Heart Rhythm, 3, 1060–1062.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark W. Kroll.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kroll, M.W., Swerdlow, C.D. Optimizing defibrillation waveforms for ICDs. J Interv Card Electrophysiol 18, 247–263 (2007). https://doi.org/10.1007/s10840-007-9095-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-007-9095-z

Keywords

Navigation