Skip to main content

Advertisement

Log in

Inflammatory activation: cardiac, renal, and cardio-renal interactions in patients with the cardiorenal syndrome

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Although inflammation is a physiologic response designed to protect us from infection, when unchecked and ongoing it may cause substantial harm. Both chronic heart failure (CHF) and chronic kidney disease (CKD) are known to cause elaboration of several pro-inflammatory mediators that can be detected at high concentrations in the tissues and blood stream. The biologic sources driving this chronic inflammatory state in CHF and CKD are not fully established. Traditional sources of inflammation include the heart and the kidneys which produce a wide range of pro-inflammatory cytokines in response to neurohormones and sympathetic activation. However, growing evidence suggests that non-traditional biomechanical mechanisms such as venous and tissue congestion due to volume overload are also important as they stimulate endotoxin absorption from the bowel and peripheral synthesis and release of pro-inflammatory mediators. Both during the chronic phase and, more rapidly, during acute exacerbations of CHF and CKD, inflammation and congestion appear to amplify each other resulting in a downward spiral of worsening cardiac, vascular, and renal functions that may negatively impact patients’ outcome. Anti-inflammatory treatment strategies aimed at attenuating end organ damage and improving clinical prognosis in the cardiorenal syndrome have been disappointing to date. A new therapeutic paradigm may be needed, which involves different anti-inflammatory strategies for individual etiologies and stages of CHF and CKD. It may also include specific (short-term) anti-inflammatory treatments that counteract inflammation during the unsettled phases of clinical decompensation. Finally, it will require greater focus on volume overload as an increasingly significant source of systemic inflammation in the cardiorenal syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Carlstedt F, Lind L, Lindahl B (1997) Proinflammatory cytokines, measured in a mixed population on arrival in the emergency department, are related to mortality and severity of disease. J Intern Med 242(5):361–365

    PubMed  CAS  Google Scholar 

  2. Ferrari R et al (1995) Tumor necrosis factor soluble receptors in patients with various degrees of congestive heart failure. Circulation 92:1479–1486

    PubMed  CAS  Google Scholar 

  3. George J et al (2006) Usefulness of anti-oxidized LDL antibody determination for assessment of clinical control in patients with heart failure. Eur J Heart Fail 8(1):58–62

    PubMed  CAS  Google Scholar 

  4. McMurray J et al (1993) Evidence of oxidative stress in chronic heart failure in humans. Eur Heart J 14(11):1493–1498

    PubMed  CAS  Google Scholar 

  5. Testa M et al (1996) Circulating levels of cytokines and their endogenous modulators in patients with mild to severe congestive heart failure due to coronary artery disease or hypertension. J Am Coll Cardiol 28(4):964–971

    PubMed  CAS  Google Scholar 

  6. Colombo PC et al (2005) Endothelial cell activation in patients with decompensated heart failure. Circulation 111(1):58–62

    PubMed  CAS  Google Scholar 

  7. White M et al (2006) Increased systemic inflammation and oxidative stress in patients with worsening congestive heart failure: improvement after short-term inotropic support. Clin Sci (Lond) 110(4):483–489

    CAS  Google Scholar 

  8. Dunaly S et al (2008) Tumor necrosis factor-alpha and mortality in heart failure: a community study. Circulation 118(6):625–631

    Google Scholar 

  9. Torre-Amione G et al (1996) Proinflammatory cytokine levels in patients with depressed left ventricular fraction: a report from the studies of left ventricular dysfunction (SOLVD). J Am Coll Cardiol 27(5):1201–1206

    PubMed  CAS  Google Scholar 

  10. Rauchhaus M et al (2000) Plasma cytokine parameters and mortality in patients with chronic heart failure. Circulation 102(25):2060–2067

    Google Scholar 

  11. Jain M et al (2009) A novel role for tumor necrosis factor-like weak inducer of apoptosis (TWEAK) in the development of cardiac dysfunction and failure. Circulation 119(15):2058–2068

    PubMed  CAS  Google Scholar 

  12. Aukrust P et al (1999) Cytokine network in congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 83(3):376–382

    PubMed  CAS  Google Scholar 

  13. Mallat Z et al (2004) Evidence for altered interleukin 18 (IL)-18 pathway in human heart failure. FASEB J 18:1752–1754

    PubMed  CAS  Google Scholar 

  14. Maeda K et al (2000) High levels of plasma brain natriuretic peptide and interleukin-6 after optimized treatment for heart failure are independent risk factors for morbidity and mortality in patients with congestive heart failure. J Am Coll Cardiol 36(5):1587–1593

    PubMed  CAS  Google Scholar 

  15. Long C (2001) The role of interleukin-1 in the failing heart. Heart Fail Rev 6(2):81–94

    PubMed  CAS  Google Scholar 

  16. Francis S et al (1998) Interleukin-1 in myocardium and coronary arteries of patients with dilated cardiomyopathy. J Mol Cell Cardiol 30:215–223

    PubMed  CAS  Google Scholar 

  17. Tsutamoto T et al (1998) Interleukin-6 spillover in the peripheral circulation increases with the severity of heart failure, and the high plasma level of interleukin-6 is an important prognostic predictor in patients with congestive heart failure. J Am Coll Cardiol 31:391–398

    PubMed  CAS  Google Scholar 

  18. Raymond R et al (2001) Elevated interleukin-6 levels in patients with asymptomatic left ventricular systolic dysfunction. Am Heart J 141(3):435–438

    PubMed  CAS  Google Scholar 

  19. Stenvinkel P et al (2005) IL-10, IL-6, and TNF-alpha: central factors in the altered cytokine network of uremia–the good, the bad, and the ugly. Kidney Int 67(4):1216–1233

    PubMed  CAS  Google Scholar 

  20. Descamps-Latscha B et al (1995) Balance between IL-1beta, TNF-alpha, and their specific inhibitors in chronic renal failure and maintenance dialysis. J Immunol 154:882–892

    PubMed  CAS  Google Scholar 

  21. Pereira BJG et al (1994) Plasma levels of IL-1beta, TNFalpha and their specific inhibitors in undialyzed chronic renal failure, CAPD and hemodialysis patients. Kidney Int 45:890–896

    PubMed  CAS  Google Scholar 

  22. Barreto DV et al (2010) Plasma interleukin-6 is independently associated with mortality in both hemodialysis and pre-dialysis patients with chronic kidney disease. Kidney Int 77(6):550–556

    PubMed  CAS  Google Scholar 

  23. Tripepi G, Mallamaci F, Zoccali C (2005) Inflammation markers, adhesion molecules, and all-cause and cardiovascular mortality in patients with ESRD: searching for the best risk marker by multivariate modeling. J Am Soc Nephrol 16(Suppl 1):S83–S88

    PubMed  CAS  Google Scholar 

  24. Hasuike Y et al (2009) Interleukin-6 is a predictor of mortality in stable hemodialysis patients. Am J Nephrol 30(4):389–398

    PubMed  CAS  Google Scholar 

  25. von Haehling S et al (2009) Inflammatory biomarkers in heart failure revisited: much more than innocent bystanders. Heart Fail Clin 5:549–560

    Google Scholar 

  26. Charalambous B et al (2007) Role of bacterial endotoxin in chronic heart failure: the gut of the matter. Shock 28(1):15–23

    PubMed  CAS  Google Scholar 

  27. Goncalves S et al (2006) Associations between renal function, volume status and endotoxaemia in chronic kidney disease patients. Nephrol Dial Transplant 21(10):2788–2794

    PubMed  CAS  Google Scholar 

  28. Chung I et al (2009) Soluble, platelet-bound, and total P-selectin as indices of platelet activation in congestive heart failure. Ann Med 41(1):45–51

    PubMed  CAS  Google Scholar 

  29. Yin W et al (2003) The prognostic value of circulating soluble cell adhesion molecules in patients with chronic congestive heart failure. Eur J Heart Fail 5(4):507–516

    PubMed  CAS  Google Scholar 

  30. Tsutamoto T et al (1995) Prognostic value of plasma soluble intercellular adhesion molecule-1 and endothelin-1 concentration in patients with chronic congestive heart failure. Am J Cardiol 76(11):803–808

    PubMed  CAS  Google Scholar 

  31. Kistorp C et al (2008) Biomarkers of endothelial dysfunction are elevated and related to prognosis in chronic heart failure patients with diabetes but not in those without diabetes. Eur J Heart Fail 10(4):380–387

    PubMed  CAS  Google Scholar 

  32. Stancanelli B et al (2010) Soluble e-selectin is an inverse and independent predictor of left ventricular wall thickness in end-stage renal disease patients. Nephron Clin Pract 114(1):c74–c80

    PubMed  CAS  Google Scholar 

  33. Bonomini M et al (1998) Serum levels of soluble adhesion molecules in chronic renal failure and dialysis patients. Nephron 79(4):399–407

    PubMed  CAS  Google Scholar 

  34. Bolton CH et al (2001) Endothelial dysfunction in chronic renal failure: roles of lipoprotein oxidation and pro-inflammatory cytokines. Nephrol Dial Transplant 16(6):1189–1197

    PubMed  CAS  Google Scholar 

  35. Stenvinkel P et al (2000) Elevated serum levels of soluble adhesion molecules predict death in pre-dialysis patients: association with malnutrition, inflammation, and cardiovascular disease. Nephrol Dial Transplant 15(10):1624–1630

    PubMed  CAS  Google Scholar 

  36. Nanayakkara PW et al (2005) Plasma asymmetric dimethylarginine (ADMA) concentration is independently associated with carotid intima-media thickness and plasma soluble vascular cell adhesion molecule-1 (sVCAM-1) concentration in patients with mild-to-moderate renal failure. Kidney Int 68(5):2230–2236

    PubMed  CAS  Google Scholar 

  37. Araujo J et al (2009) Pronostic value of high-sensitivity C-reactive protein in heart failure: a systematic review. J Card Fail 15(3):256–266

    PubMed  CAS  Google Scholar 

  38. Elster S, Braunwald E, Wood H (1956) A study of C-reactive protein in the serum of patients with congestive heart failure. Am Heart J 51:533–541

    PubMed  CAS  Google Scholar 

  39. Shah S et al (2006) High-sensitivity C-reactive protein and parameters of left ventricular dysfunction. J Card Fail 12(1):61–65

    PubMed  CAS  Google Scholar 

  40. Alonso-Martinez J et al (2002) C-reactive protein as a predictor of improvement and readmission in heart failure. Eur J Heart Fail 4(3):331–336

    PubMed  CAS  Google Scholar 

  41. Kozdag G et al (2010) Elevated level of high-sensitivity C-reactive protein is important in determining prognosis in chronic heart failure. Med Sci Monit 16(3):156–161

    Google Scholar 

  42. Costa E et al (2008) Inflammation, T-Cell phenotype, and inflammatory cytokines in chronic kidney disease patients under hemodialysis and its relationship to resistance to recombinant human erythropoietin therapy. J Clin Immunol 28:268–275

    PubMed  CAS  Google Scholar 

  43. Ortega O et al (2009) Strict volume control and longitudinal changes in cardiac biomarker levels in hemodialysis patients. Nephron Clin Pract 113(2):c96–c103

    PubMed  CAS  Google Scholar 

  44. Kim BS et al (2005) Persistent elevation of C-reactive protein may predict cardiac hypertrophy and dysfunction in patients maintained on hemodialysis. Am J Nephrol 25(3):189–195

    PubMed  Google Scholar 

  45. deFilippi C et al (2003) Cardiac troponin T and C-reactive protein for predicting prognosis, coronary atherosclerosis, and cardiomyopathy in patients undergoing long-term hemodialysis. JAMA 290(3):353–359

    PubMed  CAS  Google Scholar 

  46. Pina I, O’Connor C (2009) BNP-Guided therapy for heart failure. JAMA 301(4):432–434

    PubMed  CAS  Google Scholar 

  47. Rudiger A et al (2008) In critically ill patients, B-type natriuretic peptide (BNP) and N-terminal pro-BNP levels correlate with C-reactive protein values and leukocyte counts. Int J Cardiol 126:28–31

    PubMed  Google Scholar 

  48. Rudiger A et al (2006) Comparable increase of B-type natriuretic peptide and amino-terminal pro-B-type natriuretic peptide levels in patients with severe sepsis, septic shock, and acute heart failure. Crit Care Med 34:2140–2144

    PubMed  CAS  Google Scholar 

  49. Jensen J et al (2010) Inflammation increases NT-proBNP and the NT-proBNP/BNP ratio. Clin Res Cardiol 99:445–452

    PubMed  CAS  Google Scholar 

  50. Ortega O et al (2004) Association between C-reactive protein levels and N-terminal pro-B-type natriuretic peptide in pre-dialysis patients. Nephron Clin Pract 97(4):c125–c130

    PubMed  Google Scholar 

  51. Bongartz L et al (2005) The severe cardiorenal syndrome: ‘Guyton revisited’. Eur Heart J 26(1):11–17

    PubMed  Google Scholar 

  52. El Desoky ES (2010) Drug therapy of heart failure: an immunologic view. Am J Ther

  53. Ruiz-Ortega M et al (2002) Angiotensin II regulates the synthesis of proinflammatory cytokines and chemokines in the kidney. Kidney Int 62(Supplement 82):S12–S22

    Google Scholar 

  54. Tsutamoto T et al (2000) Angiotensin II type 1 receptor antagonist decreases plasma levels of tumor necrosis factor alpha, interleukin-6 and soluble adhesion molecules in patients with chronic heart failure. J Am Coll Cardiol 35:714–721

    PubMed  CAS  Google Scholar 

  55. Kalra D, Sivasubramanian N (2002) Angiotensin II induces tumor necrosis factor biosynthesis in the adult mammalian heart through a protein kinase C-dependent pathway. Circulation 105:2198–2205

    PubMed  CAS  Google Scholar 

  56. Moriyama T, Fujibayashi M, Fujiwara Y (1995) Angiotensin II stimulates interleukin-6 release from cultured mouse mesangial cells. J Am Soc Nephrol 6:95–101

    PubMed  CAS  Google Scholar 

  57. Prabhu S et al (2000) B-adrenergic blockade in developing heart failure: effects on myocardial inflammatory cytokines, nitric oxide, and remodeling. Circulation 101:2103–2109

    PubMed  CAS  Google Scholar 

  58. Munger M, Johnson B, Amber I (1996) Circulating concentrations of proinflammatory cytokines in mild or moderate heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 77:723–727

    PubMed  CAS  Google Scholar 

  59. Mullen W et al (2009) Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol 53:589–596

    Google Scholar 

  60. Damman K et al (2010) Congestion in chronic systolic heart failure is related to renal dysfunction and increased mortality. Eur J Heart Fail 12:974–982

    PubMed  Google Scholar 

  61. Anker S et al (1997) Elevated soluble CD14 receptors and altered cytokines in chronic heart failure. Am J Cardiol 79(10):1426–1430

    PubMed  CAS  Google Scholar 

  62. Niebauer J et al (1999) Endotoxin and immune activation in chronic heart failure: a prospective cohort study. Lancet 353(9167):1838–1842

    PubMed  CAS  Google Scholar 

  63. Peschel T et al (2003) Invasive assessment of bacterial endotoxin and inflammatory cytokines in patients with acute heart failure. Eur J Heart Fail 5(5):609–614

    PubMed  CAS  Google Scholar 

  64. Hasdai D et al (1997) Mechanical pressure and stretch release endothelin-1 from human atherosclerotic coronary arteries in vivo. Circulation 95(2):357–362

    PubMed  CAS  Google Scholar 

  65. Kawai M et al (2002) Mechanical stress-dependent secretion of interleukin 6 by endothelial cells after portal vein embolization: clinical and experimental studies. J Hepatol 37(2):240–246

    PubMed  CAS  Google Scholar 

  66. Wang BW et al (2003) Induction of matrix metalloproteinases-14 and -2 by cyclical mechanical stretch is mediated by tumor necrosis factor-alpha in cultured human umbilical vein endothelial cells. Cardiovasc Res 59(2):460–469

    PubMed  CAS  Google Scholar 

  67. Onat D et al (2007) Vascular endothelial sampling and analysis of gene transcripts: a new quantitative approach to monitor vascular inflammation. J Appl Physiol 103:1873–1878

    PubMed  CAS  Google Scholar 

  68. Colombo P et al (2005) Endothelial cell activation in patients with decompensated heart failure. Circulation 111:58–62

    PubMed  CAS  Google Scholar 

  69. Colombo P et al (2009) Activation of endothelial cells in conduit veins of dogs with heart failure and veins of normal dogs after vascular stretch by acute volume loading. J Card Fail 15(5):457–463

    PubMed  CAS  Google Scholar 

  70. Colombo P, Kebschull M, Xiang J (2009) Acute venous hypertension and congestion coupled with analysis of endothelial gene expression profiling and circulating neurohormones: a new model to characterize the endothelial and inflammatory response to acute mechanical stress in humans. J Am Coll Cardiol (Abstract)

  71. Hedayat M et al (2010) Proinflammatory cytokines in heart failure: double edged swords. Heart Fail Rev 15(6):543–562

    PubMed  CAS  Google Scholar 

  72. Kubota T et al (1997) Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-alpha. Circ Res 81(4):627–635

    PubMed  CAS  Google Scholar 

  73. Bozkurt B et al (1998) Pathophysiologically relevant concentrations of tumor necrosis factor-alpha promote progressive left ventricular dysfunction and remodeling in rats. Circulation 97(14):1382–1391

    PubMed  CAS  Google Scholar 

  74. Goldhaber JI et al (1996) Effects of TNF-alpha on [Ca2 +]i and contractility in isolated adult rabbit ventricular myocytes. Am J Physiol 271(2):H1449–H1455

    PubMed  CAS  Google Scholar 

  75. Elahi M, Asopa S, Matata B (2007) NO-cGMP and TNF-alpha counter regulatory system in blood: understanding the mechanisms leading to myocardial dysfunction and failure. Biochemica et Biophysica Acta 1772(1):5–14

    CAS  Google Scholar 

  76. Duncan DJ et al. (2010) TNF-alpha and IL-1beta increase Ca2+ leak from the sarcoplasmic reticulum and susceptibility to arrhythmia in rat ventricular myocytes. Cell Calcium 47(4):378–86

    Google Scholar 

  77. Dhingra S et al (2009) IL-10 attenuates TNF-alpha-induced NF kappaB pathway activation and cardiomyocyte apoptosis. Cardiovasc Res 82(1):59–66

    PubMed  CAS  Google Scholar 

  78. Engel D et al (2004) Cardiac myocyte apoptosis provokes adverse cardiac remodeling in transgenic mice with targeted TNF overexpression. Am J Physiol Heart Circ Physiol 287(3):H1303–H1311

    PubMed  CAS  Google Scholar 

  79. Haudek SB et al (2007) TNF provokes cardiomyocyte apoptosis and cardiac remodeling through activation of multiple cell death pathways. J Clin Invest 117(9):2692–2701

    PubMed  CAS  Google Scholar 

  80. Kaur K et al (2006) Interplay of TNF-alpha and IL-10 in regulating oxidative stress in isolated adult cardiac myocytes. J Mol Cell Cardiol 41(6):1023–1030

    PubMed  CAS  Google Scholar 

  81. Li H et al. (2009) Tumor necrosis factor-related weak inducer of apoptosis augments matrix metalloproteinase 9 (MMP-9) production in skeletal muscle through the activation of nuclear factor-kappaB-inducing kinase and p38 mitogen-activated protein kinase: a potential role of MMP-9 in myopathy. J Biol Chem 284(7):4439–4450

    Google Scholar 

  82. Shen J, O’Brien D, Xu Y (2006) Matrix metalloproteinase-2 contributes to tumor necrosis factor alpha induced apoptosis in cultured rat cardiac myocytes. Biochem Biophys Res Commun 347(4):1011–1020

    PubMed  CAS  Google Scholar 

  83. Zitta K et al. (2010) Interleukin-1beta regulates cell proliferation and activity of extracellular matrix remodelling enzymes in cultured primary pig heart cells. Biochem Biophys Res Commun 399(4):542–547

    Google Scholar 

  84. Banerjee I et al (2009) IL-6 loss causes ventricular dysfunction, fibrosis, reduced capillary density, and dramatically alters the cell populations of the developing and adult heart. Am J Physiol Heart Circ Physiol 296(5):H1694–H1704

    PubMed  CAS  Google Scholar 

  85. Matsushita K et al (2005) Interleukin-6/soluble interleukin-6 receptor complex reduces infarct size via inhibiting myocardial apoptosis. Lab Invest 85(10):1210–1223

    PubMed  CAS  Google Scholar 

  86. Hilfiker-Kleiner D, Landmesser U, Drexler H (2006) Molecular mechanisms in heart failure: focus on cardiac hypertrophy, inflammation, angiogenesis, and apoptosis. J Am College Cardiol 48(9):A56–A66

    CAS  Google Scholar 

  87. Takahashi T et al. (2010) Increased C-reactive protein expression exacerbates left ventricular dysfunction and remodeling after myocardial infarction. Am J Physiol Heart Circ Physiol

  88. Zhang R et al. (2010) C-reactive protein promotes cardiac fibrosis and inflammation in angiotensin II-induced hypertensive cardiac disease. Hypertension 55(4):953–60

    Google Scholar 

  89. Gheorghiade M et al (2005) Pathophysiologic targets in the early phase of acute heart failure syndromes. Am J Cardiol 96(6A):11G–17G

    PubMed  Google Scholar 

  90. Kim Y et al (2007) TNF-induced activation of the Nox1 NADPH oxidase and its role in the induction of necrotic cell death. Mole Cell 26(5):675–687

    CAS  Google Scholar 

  91. Kaur J, Dhaunsi G, Turner R (2004) Interleukin-1 and nitric oxide increase NADPH oxidase activity in human coronary artery smooth muscle cells. Med Princ Pract 13(1):26–29

    PubMed  Google Scholar 

  92. Johnson W et al (2002) Neurohormonal activation rapidly decreases after intravenous therapy with diuretics and vasodilators for class IV heart failure. J Am Coll Cardiol 39(10):1623–1629

    PubMed  CAS  Google Scholar 

  93. Patel MB et al (1999) Sustained improvement in flow-mediated vasodilation after short-term administration of dobutamine in patients with severe congestive heart failure. Circulation 99(1):60–64

    PubMed  CAS  Google Scholar 

  94. Charakida M et al (2005) Endothelial dysfunction in childhood infection. Circulation 111(13):1660–1665

    PubMed  Google Scholar 

  95. Hingorani AD et al (2000) Acute systemic inflammation impairs endothelium-dependent dilatation in humans. Circulation 102(9):994–999

    PubMed  CAS  Google Scholar 

  96. Vlachopoulos C et al (2005) Acute systemic inflammation increases arterial stiffness and decreases wave reflections in healthy individuals. Circulation 112(14):2193–2200

    PubMed  Google Scholar 

  97. Silverstein D (2009) Inflammation in chronic kidney disease: role in the progression of renal and cardiovascular disease. Pediatr Nephrol 24(8):1445–1452

    PubMed  Google Scholar 

  98. Abe N et al (2006) C-reactive protein-induced upregulation of extracellular matrix metalloproteinase inducer in macrophages: inhibitory effect of fluvastatin. Life Sci 78(9):1021–1028

    PubMed  CAS  Google Scholar 

  99. Blaschke F et al (2004) C-reactive protein induces apoptosis in human coronary vascular smooth muscle cells. Circulation 110(5):579–587

    PubMed  CAS  Google Scholar 

  100. Han KH et al (2004) C-reactive protein promotes monocyte chemoattractant protein-1–mediated chemotaxis through upregulating CC chemokine receptor 2 expression in human monocytes. Circulation 109(21):2566–2571

    PubMed  CAS  Google Scholar 

  101. Pasceri V, Willerson J, Yeh E (2000) Direct proinflammatory effect of C-reactive protein in human endothelial cells. Circulation 102:2165–2168

    PubMed  CAS  Google Scholar 

  102. DiPetrillo K, Coutermarsh B, Gesek FA (2003) Urinary tumor necrosis factor contributes to sodium retention and renal hypertrophy during diabetes. Am J Physiol Renal Physiol 284(1):F113–F121

    PubMed  CAS  Google Scholar 

  103. Garvin JL, Ortiz PA (2003) The role of reactive oxygen species in the regulation of tubular function. Acta Physiol Scand 179(3):225–232

    PubMed  CAS  Google Scholar 

  104. Fiksen-Olsen MJ et al (1992) Renal effects of angiotensin II inhibition during increases in renal venous pressure. Hypertension 19(2):II137–II141

    PubMed  CAS  Google Scholar 

  105. Kastner PR, Hall JE, Guyton AC (1982) Renal hemodynamic responses to increased renal venous pressure: role of angiotensin II. Am J Physiol 243(3):F260–F264

    PubMed  CAS  Google Scholar 

  106. Taddei S et al (1991) Vascular renin-angiotensin system and neurotransmission in hypertensive persons. Hypertension 18(3):266–277

    PubMed  CAS  Google Scholar 

  107. DiBona GF (2000) Nervous kidney. Interaction between renal sympathetic nerves and the renin-angiotensin system in the control of renal function. Hypertension 36(6):1083–1088

    PubMed  CAS  Google Scholar 

  108. Kon V, Yared A, Ichikawa I (1985) Role of renal sympathetic nerves in mediating hypoperfusion of renal cortical microcirculation in experimental congestive heart failure and acute extracellular fluid volume depletion. J Clin Invest 76(5):1913–1920

    PubMed  CAS  Google Scholar 

  109. Damman K et al (2007) Decreased cardiac output, venous congestion and the association with renal impairment in patients with cardiac dysfunction. Eur J Heart Fail 9(9):872–878

    PubMed  Google Scholar 

  110. Boswell RN et al (1994) Interleukin 6 production by human proximal tubular epithelial cells in vitro: analysis of the effects of interleukin-1 alpha (IL-1 alpha) and other cytokines. Nephrol Dial Transplant 9(6):599–606

    PubMed  CAS  Google Scholar 

  111. Yhee JY et al (2008) Effects of T lymphocytes, interleukin-1, and interleukin-6 on renal fibrosis in canine end-stage renal disease. J Vet Diagn Invest 20(5):585–592

    PubMed  Google Scholar 

  112. Szeto CC et al (2008) Endotoxemia is related to systemic inflammation and atherosclerosis in peritoneal dialysis patients. Clin J Am Soc Nephrol 3(2):431–436

    PubMed  CAS  Google Scholar 

  113. Schwedler SB et al (2003) Tubular staining of modified C-reactive protein in diabetic chronic kidney disease. Nephrol Dial Transplant 18(11):2300–2307

    PubMed  CAS  Google Scholar 

  114. Daha MR, van Kooten C (2000) Is the proximal tubular cell a proinflammatory cell? Nephrol Dial Transplant 15(6):41–43

    PubMed  Google Scholar 

  115. Radeke HH et al (1990) Interleukin 1-alpha and tumor necrosis factor-alpha induce oxygen radical production in mesangial cells. Kidney Int 37(2):767–775

    PubMed  CAS  Google Scholar 

  116. Kirchhoff F et al (2008) Rapid development of severe end-organ damage in C57BL/6 mice by combining DOCA salt and angiotensin II. Kidney Int 73(5):643–650

    PubMed  CAS  Google Scholar 

  117. Longhini C, Molino C, Fabbian F (2010) Cardiorenal syndrome: still not a defined entity. Clin Exp Nephrol 14(1):12–21

    PubMed  Google Scholar 

  118. Cotter G et al (2002) Acute congestive heart failure: a novel approach to its pathogenesis and treatment. Eur J Heart Fail 4:227–234

    PubMed  Google Scholar 

  119. Damman K et al (2009) Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J Am Coll Cardiol 53(7):597–599

    Google Scholar 

  120. Mullens W et al (2009) Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol 53(7):589–596

    PubMed  Google Scholar 

  121. Anker S, Coats A (2002) How to RECOVER from RENAISSANCE? The significance of the results of RECOVER, RENAISSANCE, RENEWAL and ATTACH. Int J Cardiol 86:123–130

    PubMed  Google Scholar 

  122. Mann DL et al (2004) Targeted anticytokine therapy in patients with chronic heart failure: results of the randomized etanercept worldwide evaluation (RENEWAL). Circulation 109(13):1594–1602

    PubMed  CAS  Google Scholar 

  123. Chung ES et al. (2003) Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-alpha, in patients with moderate-to-severe heart failure: results of the anti-TNF therapy against congestive heart failure (ATTACH) trial. Circulation 107(25):3133–3140

    Google Scholar 

  124. Torre-Amione G et al (2007) A study to assess the effects of a broad-spectrum immune modulatory therapy on mortality and morbidity in patients with chronic heart failure: the ACCLAIM trial rationale and design. Can J Cardiol 23(5):369–376

    PubMed  Google Scholar 

  125. Torre-Amione G et al (2008) Results of a non-specific immunomodulation therapy in chronic heart failure (ACCLAIM trial): a placebo-controlled randomised trial. Lancet 371(9608):228–236

    PubMed  CAS  Google Scholar 

  126. Aukrust P et al (2006) The role of intravenous immunoglobulin in the treatment of chronic heart failure. Int J Cardiol 112(1):40–45

    PubMed  Google Scholar 

  127. Gullestad L et al (2001) Immunomodulating therapy with intravenous immunoglobulin in patients with chronic heart failure. Circulation 103(2):220–225

    PubMed  CAS  Google Scholar 

  128. Ikeda U et al (2008) Immunoadsorption therapy for patients with dilated cardiomyopathy and heart failure. Curr Cardiol Rev 4(3):219–222

    PubMed  CAS  Google Scholar 

  129. Haramaki N, Ikeda H (2003) Statins for heart failure: a potential for new treatment. Cardiovasc Res 60(2):217–219

    PubMed  CAS  Google Scholar 

  130. Wei GC et al (2002) Subacute and chronic effects of quinapril on cardiac cytokine expression, remodeling, and function after myocardial infarction in the rat. J Cardiovasc Pharmacol 39(6):842–850

    PubMed  CAS  Google Scholar 

  131. Dhindsa S et al (2003) Angiotensin II and Inflammation: the effect of ACE inhibition and angiotensin II receptor blockade. Metab Syndr Relat Disord 1(4):255–259

    PubMed  CAS  Google Scholar 

  132. Gullestad L et al (1999) Effect of high-versus low-dose angiotensin converting enzyme inhibition on cytokine levels in chronic heart failure. J Am Coll Cardiol 34:2061–2067

    PubMed  CAS  Google Scholar 

  133. Kjekshus J et al (2007) Rosuvastatin in older patients with systolic heart failure. N Engl J Med 357(22):2248–2261

    PubMed  CAS  Google Scholar 

  134. Kjekshus J et al (2005) A statin in the treatment of heart failure? Controlled rosuvastatin multinational study in heart failure (CORONA): study design and baseline characteristics. Eur J Heart Fail 7(6):1059–1069

    PubMed  CAS  Google Scholar 

  135. Shah MR et al (2001) Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness (ESCAPE): design and rationale. Am Heart J 141(4):528–535

    PubMed  CAS  Google Scholar 

  136. Yu C et al (2007) Long-term, high-dosage candesartan suppresses inflammation and injury in chronic kidney disease: nonhemodynamic renal protection. J Am Soc Nephrol 18:750–759

    PubMed  CAS  Google Scholar 

  137. Kunz R et al (2008) Meta-analysis: effect of monotherapy and combination therapy with inhibitors of the renin angiotensin system on proteinuria in renal disease. Ann Intern Med 148(1):30–48

    PubMed  Google Scholar 

  138. Goicoechea M et al (2006) Effects of atorvastatin on inflammatory and fibrinolytic parameters in patients with chronic kidney disease. J Am Soc Nephrol 17(12):S231–S235

    PubMed  CAS  Google Scholar 

  139. Wanner C et al (2005) Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N Engl J Med 353(3):238–248

    PubMed  CAS  Google Scholar 

  140. Sharp Collaborative Group (2010) Study of heart and renal protection (SHARP): randomized trial to assess the effects of lowering low-density lipoprotein cholesterol among 9,438 patients with chronic kidney disease. Am Heart J 160(5):785 e10–794 e10 (Results presented at the American Society of Nephrology 2010, www.sharpinfo.org)

  141. Larsen AI et al (2001) Effect of aerobic exercise training on plasma levels of tumor necrosis factor alpha in patients with heart failure. Am J Cardiol 88(7):805–808

    PubMed  CAS  Google Scholar 

  142. Fuchs M, Drexler H (2004) Chronic heart failure and proinflammatory cytokines: possible role of physical exercise. Exerc Immunol Rev 10:56–65

    PubMed  Google Scholar 

  143. Adamopoulos S et al (2001) Physical training reduces peripheral markers of inflammation in patients with chronic heart failure. Eur Heart J 22(9):791–797

    PubMed  CAS  Google Scholar 

  144. Conraads VM et al (2002) Combined endurance/resistance training reduces plasma TNF-alpha receptor levels in patients with chronic heart failure and coronary artery disease. Eur Heart J 23(23):1854–1860

    PubMed  CAS  Google Scholar 

  145. Ennezat PV et al (2001) Physical training in patients with chronic heart failure enhances the expression of genes encoding antioxidative enzymes. J Am Coll Cardiol 38(1):194–198

    PubMed  CAS  Google Scholar 

  146. Afzal A, Brawner CA, Keteyian SJ (1998) Exercise training in heart failure. Prog Cardiovasc Dis 41(3):175–190

    PubMed  CAS  Google Scholar 

  147. Hambrecht R et al (1998) Regular physical exercise corrects endothelial dysfunction and improves exercise capacity in patients with chronic heart failure. Circulation 98(24):2709–2715

    PubMed  CAS  Google Scholar 

  148. Hornig B, Maier V, Drexler H (1996) Physical training improves endothelial function in patients with chronic heart failure. Circulation 93(2):210–214

    PubMed  CAS  Google Scholar 

  149. Piepoli MF et al (2004) Exercise training meta-analysis of trials in patients with chronic heart failure (ExTraMATCH). BMJ 328(7433):189

    PubMed  CAS  Google Scholar 

  150. Belardinelli R et al (1999) Randomized, controlled trial of long-term moderate exercise training in chronic heart failure: effects on functional capacity, quality of life, and clinical outcome. Circulation 99(9):1173–1182

    PubMed  CAS  Google Scholar 

  151. Voors AA (2009) The value of physical training in patients with heart failure. Ned Tijdschr Geneeskd 153:A666

    PubMed  Google Scholar 

  152. Adams GR, Vaziri ND (2006) Skeletal muscle dysfunction in chronic renal failure: effects of exercise. Am J Physiol Renal Physiol 290(4):F753–F761

    PubMed  CAS  Google Scholar 

  153. Cheema BS, Singh MA (2005) Exercise training in patients receiving maintenance hemodialysis: a systematic review of clinical trials. Am J Nephrol 25(4):352–364

    PubMed  Google Scholar 

  154. Johansen KL (2005) Exercise and chronic kidney disease: current recommendations. Sports Med 35(6):485–499

    PubMed  Google Scholar 

  155. Heymans S et al (2009) Inflammation as a therapeutic target in heart failure? A scientific statement from the translational research committee of the heart failure association of the European society of cardiology. Eu J Heart Fail 11:119–129

    CAS  Google Scholar 

  156. Zhang H et al (2008) Prednisone adding to usual care treatment for refractory decompensated congestive heart failure. Int Heart J 49(5):587–595

    PubMed  Google Scholar 

Download references

Acknowledgment

Dr. Colombo’s research is supported by NIH grant R01 HL092144.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo C. Colombo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colombo, P.C., Ganda, A., Lin, J. et al. Inflammatory activation: cardiac, renal, and cardio-renal interactions in patients with the cardiorenal syndrome. Heart Fail Rev 17, 177–190 (2012). https://doi.org/10.1007/s10741-011-9261-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-011-9261-3

Keywords

Navigation