Skip to main content

Advertisement

Log in

Vagus nerve stimulation: from pre-clinical to clinical application: challenges and future directions

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Vagus nerve stimulation was performed experimentally for the first time more than 150 years ago. In the 1980s and 1990s, vagus nerve stimulation was shown, both in the anesthetized and in the conscious animal, to exert marked antiarrhythmic effects, particularly during acute myocardial ischemia. There is a strong rationale for a beneficial effect of augmented vagal activity in the setting of chronic heart failure. Studies in experimental models of heart failure showed that chronic vagus nerve stimulation exerts beneficial effects on left ventricular function and on survival. Vagus nerve stimulation is approved in man for refractory epilepsy and depression. The first-in-man study performed in 32 patients with chronic heart failure suggests that vagus nerve stimulation was safe and well tolerated. Six months of open-label treatment was associated with significant improvements (P < 0.001) in NYHA class, quality of life, 6-min walk test, LV ejection fraction (from 22 ± 7 to 29 ± 8%), and LV systolic volumes (P = 0.02). These improvements were maintained at 1 year. Mechanisms of action may include the following: heart rate, anti-adrenergic, anti-apoptotic, and anti-inflammatory effects as well as an increase in nitric oxide. Controlled clinical trials will start soon to assess whether vagus nerve stimulation can indeed represent a new non-pharmacological approach for the treatment of symptomatic heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Einbrodt (1859) Ueber Herzreizung und ihr Verhaeltnis zum Blutdruck. Akademie der Wissenschaften (Vienna). Sitzungsberichte 38:345

  2. Hering HE (1901) Die Myoerethischen Unregelmaessigkeiten des Herzens. Praeger Medizinische Wochenschrift 26:7

    Google Scholar 

  3. Scherf D (1929) Untersuchungen ueber die Entstehungweise der Extrasystolen und der extrasystolischen Allorhythmien. Z Exp Med 65:198

    Article  Google Scholar 

  4. Scherf D, Blumenfeld S, Yildiz M (1961) Experimental study on ventricular extrasystoles provoked by vagal stimulation. Am Heart J 62:670–675

    Article  CAS  PubMed  Google Scholar 

  5. Garrey WE (1908) Some effects of cardiac nerves upon ventricular fibrillation. Am J Physiol 21:283–300

    Google Scholar 

  6. Shumacker HB Jr, Riberi A, Boone RD, Kajikuri H (1956) Ventricular fibrillation in the hypothermic state. IV. The role of extrinsic cardiac innervation. Ann Surg 143:223–229

    PubMed  Google Scholar 

  7. Scherlag BJ, Helfant RH, Haft JI, Damato AN (1970) Electrophysiology underlying ventricular arrhythmias due to coronary ligation. Am J Physiol 219:1665–1671

    CAS  PubMed  Google Scholar 

  8. Kerzner J, Wolf M, Kosowsky BD, Lown B (1973) Ventricular ectopic rhythms following vagal stimulation in dogs with acute myocardial infarction. Circulation 47:44–50

    CAS  PubMed  Google Scholar 

  9. Kent KM, Smith ER, Redwood DR, Epstein SE (1973) Electrical stability of acutely ischemic myocardium: influences of heart rate and vagal stimulation. Circulation 47:291–298

    CAS  PubMed  Google Scholar 

  10. Goldstein RE, Karsh RB, Smith ER, Orlando M, Norman D, Farnham G, Redwood DR, Epstein SE (1973) Influence of atropine and of vagally mediated bradycardia on the occurrence of ventricular arrhythmias following acute coronary occlusion in closed-chest dogs. Circulation 47:1180–1190

    CAS  PubMed  Google Scholar 

  11. Myers RW, Pearlman AS, Hyman RM, Goldstein RA, Kent KM, Goldstein RE, Epstein SE (1974) Beneficial effects of vagal stimulation and bradycardia during experimental acute myocardial ischemia. Circulation 49:943–947

    CAS  PubMed  Google Scholar 

  12. Corr PB, Gillis RA (1974) Role of the vagus nerves in the cardiovascular changes induced by coronary occlusion. Circulation 49:86–97

    CAS  PubMed  Google Scholar 

  13. Yoon MS, Han J, Tse WW, Rogers R (1977) Effects of vagal stimulation, atropine, and propranolol on fibrillation threshold of normal and ischemic ventricles. Am Heart J 93:60–65

    Article  CAS  PubMed  Google Scholar 

  14. Yoon MS, Fondacaro JD, Han J (1978) Effects of vagal stimulation and atropine on ventricular arrhythmias during acute coronary occlusion. J Electrocardiol 11:27–31

    Article  CAS  PubMed  Google Scholar 

  15. Kolman BS, Verrier RL, Lown B (1975) The effect of vagus nerve stimulation upon vulnerability of the canine ventricle: Role of the sympathetic-parasympathetic interactions. Circulation 52:578–585

    CAS  PubMed  Google Scholar 

  16. Furey SA 3rd, Levy MN (1983) Interactions among heart rate, autonomic activity, and arterial pressure upon the multiple repetitive extrasystole threshold in the dog. Am Heart J 106:1112–1120

    Article  PubMed  Google Scholar 

  17. Murdock DK, Loeb JM, Euler DE, Randall WC (1980) Electrophysiology of coronary reperfusion. A mechanism for reperfusion arrhythmias. Circulation 61:175–182

    CAS  PubMed  Google Scholar 

  18. Zuanetti G, De Ferrari GM, Priori SG, Schwartz PJ (1987) Protective effect of vagal stimulation on reperfusion arrhythmias in cats. Circ Res 61:429–435

    CAS  PubMed  Google Scholar 

  19. Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357:1121–1135

    Article  CAS  PubMed  Google Scholar 

  20. Schwartz PJ, Billman GE, Stone HL (1984) Autonomic mechanisms in ventricular fibrillation induced by myocardial ischemia during exercise in dogs with a healed myocardial infarction. An experimental preparation for sudden cardiac death. Circulation 69:790–800

    CAS  PubMed  Google Scholar 

  21. De Ferrari GM, Vanoli E, Stramba-Badiale M, Hull SS Jr, Foreman RD, Schwartz PJ (1991) Vagal reflexes and survival during acute myocardial ischemia in conscious dogs with a healed myocardial infarction. Am J Physiol 261:H63–H69

    PubMed  Google Scholar 

  22. Vanoli E, De Ferrari GM, Stramba-Badiale M, Hull SS Jr, Foreman RD, Schwartz PJ (1991) Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction. Circ Res 68:1471–1481

    CAS  PubMed  Google Scholar 

  23. Schwartz PJ, Pagani M, Lombardi F, Malliani A, Brown AM (1973) A cardiocardiac sympathovagal reflex in the cat. Circ Res 32:215–220

    CAS  PubMed  Google Scholar 

  24. De Ferrari GM, Salvati P, Grossoni M, Ukmar G, Vaga L, Patrono C, Schwartz PJ (1993) Pharmacologic modulation of the autonomic nervous system in the prevention of sudden cardiac death. A study with propranolol, methacholine and oxotremorine in conscious dogs with a healed myocardial infarction. J Am Coll Cardiol 22:283–290

    Article  PubMed  Google Scholar 

  25. Ando M, Katare RG, Kakinuma Y, Zhang D, Yamasaki F, Muramoto K, Sato T (2005) Efferent vagal nerve stimulation protects heart against ischemia-induced arrhythmias by preserving connexin43 protein. Circulation 112:164–170

    Article  CAS  PubMed  Google Scholar 

  26. Schwartz PJ, De Ferrari GM (2010) Sympathetic-parasympathetic interaction in health and disease: abnormalities and relevance in heart failure. Heart Fail Rev doi: 10.1007/s10741-010-9179-1. Online First™, 25 June 2010

  27. Waxman MB, Downar E, Berman ND, Felderhof CH (1974) Phenylephrine (Neo-synephrine) terminated ventricular tachycardia. Circulation 50:656–664

    CAS  PubMed  Google Scholar 

  28. Waxman MB, Wald RW (1977) Termination of ventricular tachycardia by an increase in cardiac vagal drive. Circulation 56:385–391

    CAS  PubMed  Google Scholar 

  29. Waxman MB, Cupps CL, Cameron DA (1988) Modulation of an idioventricular rhythm by vagal tone. J Am Coll Cardiol 11:1052–1060

    Article  CAS  PubMed  Google Scholar 

  30. Facchini M, De Ferrari GM, Bonazzi O, Weiss T, Schwartz PJ (1991) Effect of reflex vagal activation on frequency of ventricular premature complexes. Am J Cardiol 68:349–354

    Article  CAS  PubMed  Google Scholar 

  31. Li M, Zheng C, Sato T, Kawada T, Sugimachi M, Sunagawa K (2004) Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats. Circulation 109:120–124

    Article  PubMed  Google Scholar 

  32. Sabbah HN, Rastogi S, Mishra S, Gupta RC, Ilsar I, Imai M, Cohen U, Ben-David T, Ben-Ezra O (2005) Long-term therapy with neuroselective electric vagus nerve stimulation improves LV function and attenuates global LV remodelling in dogs with chronic heart failure. (abstr) Eur J Heart Fail (Suppl) 4:166

    Google Scholar 

  33. Sabbah HN, Imai M, Zaretsky A, Rastogi, S, Wang M, Jiang A, Zaca V (2007) Therapy with vagus nerve electrical stimulation combined with beta-blockade improves left ventricular systolic function in dogs with heart failure beyond that seen with beta-blockade alone. (abstr) Eur J Heart Fail (Suppl 1) 6:114

    Google Scholar 

  34. Zhang Y, Popovic ZB, Bibevski S, Fakhry I, Sica DA, Van Wagoner DR, Mazgalev TN (2009) Chronic vagus nerve stimulation improves autonomic control and attenuates systemic inflammation and heart failure progression in a canine high-rate pacing model. Circ Heart Fail 2:692–699

    Article  CAS  PubMed  Google Scholar 

  35. Sabbah HN, Wang M, Jiang A, Ruble SB, Hamann JJ (2010) Right vagus nerve stimulation improves left ventricular function in dogs with heart failure. (abstr) J Am Coll Cardiol (Suppl) 55:A16.E151

  36. Ben-Menachem E (2001) Vagus nerve stimulation, side effects, and long-term safety. J Clin Neurophysiol 18:415–418

    Article  CAS  PubMed  Google Scholar 

  37. Schachter SC (2002) Vagus nerve stimulation therapy summary: five years after FDA approval. Neurology 59:S15–S20

    PubMed  Google Scholar 

  38. Uthman BM, Reichl AM, Dean JC, Eisenschenk S, Gilmore R, Reid S, Roper SN, Wilder BJ (2004) Effectiveness of vagus nerve stimulation in epilepsy patients, a 12-year observation. Neurology 63:1124–1126

    CAS  PubMed  Google Scholar 

  39. Nemeroff CB, Mayberg HS, Krahl SE, McNamara J, Frazer A, Henry TR, George MS, Charney DS, Brannan SK (2006) VNS therapy in treatment-resistant depression: clinical evidence and putative neurobiological mechanisms. Neuropsychopharmacology 31:1345–1355

    Article  PubMed  Google Scholar 

  40. Shuchman M (2007) Approving the vagus-nerve stimulator for depression. N Engl J Med 356:1604–1607

    Article  CAS  PubMed  Google Scholar 

  41. Schwartz PJ, De Ferrari GM, Sanzo A, Landolina M, Rordorf R, Raineri C, Campana C, Revera M, Ajmone-Marsan N, Tavazzi L, Odero A (2008) Long term vagal stimulation in patients with advanced heart failure: first experience in man. Eur J Heart Fail 10:884–891

    Article  PubMed  Google Scholar 

  42. De Ferrari GM, Crijns HJGM, Borggrefe M, Milasinovic G, Smid J, Zabel M, Gavazzi A, Sanzo A, Dennert R, Kuschyk J, Raspopovic S, Klein H, Swedberg K, Schwartz PJ (2010) Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. Eur Heart J. doi: 10.1093/eurheartj/ehq391

  43. De Ferrari GM, Vanoli E, Schwartz PJ (1994) Vagal activity and ventricular fibrillation. In: Levy MN, Schwartz PJ (eds) Vagal control of the heart: experimental basis and clinical implications. Futura Publishing Co, Armonk, NY, pp 613–636

    Google Scholar 

  44. Maroko PR, Kjekshus JK, Sobel BE, Watanabe T, Cowell JW, Ross J Jr, Braunwald E (1971) Factors influencing infarct size following experimental coronary artery occlusions. Circulation 43:67–82

    CAS  PubMed  Google Scholar 

  45. Lechat P, Hulot J-S, Escolano S, Mallet A, Leizorovicz A, Werhlen-Grandjean M, Pochmalicki G, Dargie H, on behalf of the CIBIS II Investigators (2001) Heart rate and cardiac rhythm relationships with bisoprolol benefit in chronic heart failure in CIBIS II Trial. Circulation 103:1428–1433

    Google Scholar 

  46. Swedberg K, Komajda M, Böhm M, Borer JS, Ford I, Dubost-Brama A, Lerebours G, Tavazzi L, on behalf of the SHIFT Investigators (2010) Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet 376:875–885

    Google Scholar 

  47. Olshansky B, Sabbah HN, Hauptman PJ, Colucci WS (2008) Parasympathetic nervous system and heart failure. Pathophysiology and potential implications for therapy. Circulation 118:863–871

    Article  PubMed  Google Scholar 

  48. Tracey KJ (2002) The inflammatory reflex. Nature 420:853–859

    Article  CAS  PubMed  Google Scholar 

  49. Borggrefe M, De Ferrari GM, Crijns HJ, Milasinovic G, Klein H, Zabel M, Gavazzi A, Kuschyk J, Schoene A, Sanzo A, Dennert R, Raspopovic S, Smid J, Iacovoni A, Schwartz PJ (2009) Chronic vagus nerve stimulation in patients with heart failure: potential predictors of success. (abstr) Circulation (Suppl) 120:S911

  50. Billman GE, Schwartz PJ, Stone HL (1984) The effects of daily exercise on susceptibility to sudden cardiac death. Circulation 69:1182–1189

    CAS  PubMed  Google Scholar 

  51. La Rovere MT, Bersano C, Gnemmi M, Specchia G, Schwartz PJ (2002) Exercise-induced increase in baroreflex sensitivity predicts improved prognosis after myocardial infarction. Circulation 106:945–949

    Article  PubMed  Google Scholar 

  52. De Ferrari GM, Mantica M, Vanoli E, Hull SS Jr, Schwartz PJ (1993) Scopolamine increases vagal tone and vagal reflexes in patients after myocardial infarction. J Am Coll Cardiol 22:1327–1334

    Article  PubMed  Google Scholar 

  53. La Rovere MT, De Ferrari GM (1995) New potential uses for transdermal scopolamine (hyoscine). Drugs 50:769–776

    Article  CAS  PubMed  Google Scholar 

  54. Desai MY, Watanabe M, Laddu A. Hauptman PJ (2010) Pharmacologic modulation of parasympathetic activity in heart failure. Heart Fail Rev

  55. Meerson FZ, Radzievskiǐ SA, Vorontsova E, Golubeva L, Chuvi’Iskaia LM (1989) Possibility of reflex activation of stress-limiting systems and the prevention of arrhythmia by electroacupuncture. Kardiologiia 29:88–90

    CAS  PubMed  Google Scholar 

  56. Zamotrinsky A, Afanasiev S, Karpov RS, Cherniavsky A (1997) Effects of electrostimulation of the vagus afferent endings in patients with coronary artery disease. Coron Artery Dis 8:551–557

    CAS  PubMed  Google Scholar 

  57. Zamotrinsky AV, Kondratiev B, de Jong JW (2001) Vagal neurostimulation in patients with coronary artery disease. Auton Neurosci 88:109–116

    Article  CAS  PubMed  Google Scholar 

  58. Schwartz SI, Griffith LS, Neistadt A, Hagfors N (1967) Chronic carotid sinus nerve stimulation in the treatment of essential hypertension. Am J Sur 114:5–15

    Article  CAS  Google Scholar 

  59. Braunwald E, Epstein SE, Glick G, Wechsler AS, Braunwald NS (1967) Relief of angina pectoris by electrical stimulation of the carotid sinus nerves. N Eng J Med 277:1278–1283

    Article  CAS  Google Scholar 

  60. Tordoi JH, Schmidli SI, Savolainen H, Liebeskind U, Hansky B, Herold U, Irwin E, Kroon AA, de Leeuw P, Peters TK, Kieval R, Cody R (2007) An implantable carotid sinus baroreflex activating system: surgical technique and short-term outcome from a multi-center feasibility trial for the treatment of resistant hypertension. Eur J Vasc Endovasc Surg 33:414–421

    Article  Google Scholar 

  61. Lohmeier TE, Irwin ED, Rossing MA, Serdar DJ, Kieval RS (2004) Prolonged activation of the baroreflex produces sustained hypotension. Hypertension 43:306–311

    Article  CAS  PubMed  Google Scholar 

  62. Rheos hypertension system demonstrates feasibility; phase 3 trial under way. 30 March, 2009. http://www.theheart.org/article/954051.do. Accessed 10 May 2010

  63. Heusser K, Tank J, Engeli S, Diedrich A, Menne J, Eckert S, Peters T, Sweep FCGJ, Haller H, Pichlmaier AM, Luft FC, Jordan J (2010) Carotid baroreceptor stimulation, sympathetic activity, baroreflex function, and blood pressure in hypertensive patients. Hypertension 55:619–626

    Article  CAS  PubMed  Google Scholar 

  64. Zucker IH, Hackley JF, Cornish KG, Hiser BA, Anderson NR, Kieval R, Irwin ED, Serdar DJ, Peuler JD, Rossing MA (2007) Chronic baroreceptor activation enhances survival in dogs with pacing-induced heart failure. Hypertension 50:904–910

    Article  CAS  PubMed  Google Scholar 

  65. Olgin JE, Takahashi T, Wilson E, Vereckei A, Steinberg H, Zipes DP (2002) Effects of thoracic spinal cord stimulation on cardiac autonomic regulation of the sinus and atrioventricular nodes. J Cardiovasc Electrophysiol 13:475–481

    Article  PubMed  Google Scholar 

  66. Lopshire JG, Zhou X, Dusa C, Ueyama T, Rosenberger J, Courtney N, Ujhelyi M, Mullen T, Das M, Zipes DP (2009) Spinal cord stimulation improves ventricular function and reduces ventricular arrhythmias in a canine postinfarction heart failure model. Circulation 120:286–294

    Article  PubMed  Google Scholar 

  67. Schauerte P, Mischke K, Plisiene J, Waldmann M, Zarse M, Stellbrink C, Schimpf T, Knackstedt C, Sinha A, Hanrath P (2001) Catheter stimulation of cardiac parasympathetic nerves in humans. A novel approach to the cardiac autonomic nervous system. Circulation 104:2430–2435

    Article  CAS  PubMed  Google Scholar 

  68. Bianchi S, Rossi O, Della Scala A, Kornet L, Pulvirenti R, Monari G, Di Renzi P, Schauerte P, Azzolinini P (2009) Atrioventricular (AV) node vagal stimulation by transvenous permanent lead implantation to modulate AV node function: safety and feasibility in humans. Heart Rhythm 6:1282–1286

    Article  PubMed  Google Scholar 

  69. Katare RG, Ando M, Kakinuma Y, Arikawa M, Handa T, Yamasaki F, Sato T (2009) Vagal nerve stimulation prevents reperfusion injury through inhibition of opening of mitochondrial permeability transition pore independent of the bradycardiac effect. J Thorac Cardiovasc Surg 137:223–231

    Article  CAS  PubMed  Google Scholar 

  70. Uemura K, Zheng C, Li M, Kawada T, Sugimachi M (2010) Early short-term vagal nerve stimulation attenuates cardiac remodeling after reperfused myocardial infarction. J Cardiac Fail 16:689–699

    Article  Google Scholar 

  71. Ronson RS, Puskas JD, Thourani VH, Velez DA, Bufkin BL, Glass J, Guyton RA, Vinten-Johansen J (2003) Controlled intermittent asystole cardiac therapy induced by pharmacologically potentiated vagus nerve stimulation in normal and hibernating myocardium. Ann Thorac Surg 75:1929–1936

    Article  PubMed  Google Scholar 

  72. Robinson TG, Carr SJ (2002) Cardiovascular autonomic dysfunction in uremia. Kidney Int 62:1921–1932

    Article  PubMed  Google Scholar 

  73. Kuncová J, Šviglerová J, Kummer W, Rajdl D, Chottová-Dvořáková M, Tonar Z, Nalos L, Štengl M (2009) Parasympathetic regulation of heart rate in rats after 5/6 nephrectomy is impaired despite functionally intact cardiac innervation. Nephrol Dial Transplant 24:2362–2370

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaetano M. De Ferrari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Ferrari, G.M., Schwartz, P.J. Vagus nerve stimulation: from pre-clinical to clinical application: challenges and future directions. Heart Fail Rev 16, 195–203 (2011). https://doi.org/10.1007/s10741-010-9216-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-010-9216-0

Keywords

Navigation