Skip to main content
Log in

Thinking big: large-scale collaborative research in observational epidemiology

  • COMMENTARY
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

Efforts to identify risk factors for chronic diseases have tended to involve observational studies characterised by relatively few disease outcomes. In the absence of individual studies of sufficiently large size, synthesis of available evidence from multiple smaller studies can help enhance statistical power and aid appropriate interpretation. While meta-analyses of published findings can help prioritize research hypotheses, they are inherently limited by the scale of the evidence available for review and by vulnerability to potential reporting biases. By contrast, collaborative analyses of individual participant data from a comprehensive set of relevant epidemiological studies can offer several advantages over moderately sized individual studies or meta-analyses of aggregated data. This review describes those advantages with reference to selected examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

BPC3:

Breast and Prostate Cancer Cohort Consortium

CCGC:

CRP CHD Genetics Collaboration

CHD:

Coronary heart disease

CRP:

C-reactive protein

ENGAGE:

European Network of Genomic and Genetic Epidemiology

EPIC:

European Prospective Investigation into Cancer and Nutrition

ERFC:

Emerging Risk Factors Collaboration

GWAS:

Genomewide association study

HDL:

High-density lipoprotein

IPD:

Individual participant data

References

  1. Weinberg AM. Impact of large-scale science on the United States: big science is here to stay, but we have yet to make the hard financial and educational choices it imposes. Science. 1961;134(3473):161–4.

    Article  PubMed  Google Scholar 

  2. Galison P. The many faces of big science. In: Galison P, Hevly B, editors. Big science: the growth of large-scale research. Stanford: Stanford University Press; 1992. p. 1–17.

    Google Scholar 

  3. Chen Z, Lee L, Chen J, Collins R, Wu F, Guo Y, et al. Cohort profile: the Kadoorie study of chronic disease in China (KSCDC). Int J Epidemiol. 2005;34(6):1243–9.

    Article  PubMed  Google Scholar 

  4. Elliott P, Peakman TC. The UK Biobank sample handling and storage protocol for the collection, processing and archiving of human blood and urine. Int J Epidemiol. 2008;37(2):234–44.

    Article  PubMed  Google Scholar 

  5. Lyman GH, Kuderer NM. The strengths and limitations of meta-analyses based on aggregate data. BMC Med Res Methodol. 2005;5(1):14.

    Article  PubMed  Google Scholar 

  6. Stewart LA, Tierney JF. To IPD or not to IPD? Advantages and disadvantages of systematic reviews using individual patient data. Eval Health Prof. 2002;25(1):76–97.

    Article  PubMed  Google Scholar 

  7. Seminara D, Khoury MJ, O’Brien TR, Manolio T, Gwinn ML, Little J, et al. The emergence of networks in human genome epidemiology: challenges and opportunities. Epidemiology. 2007;18(1):1–8.

    Article  PubMed  Google Scholar 

  8. Clarke R, Shipley M, Lewington S, Youngman L, Collins R, Marmot M, et al. Underestimation of risk associations due to regression dilution in long-term follow-up of prospective studies. Am J Epidemiol. 1999;150(4):341–53.

    CAS  PubMed  Google Scholar 

  9. The Emerging Risk Factors Collaboration. The emerging risk factors collaboration: analysis of individual data on lipid, inflammatory and other markers in over 1.1 million participants in 104 prospective studies of cardiovascular diseases. Eur J Epidemiol. 2007;22(12):839–69.

    Article  Google Scholar 

  10. The Emerging Risk Factors Collaboration. Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality. JAMA. 2009;302(4):412–23.

    Article  Google Scholar 

  11. Barnathan ES. Has lipoprotein ‘little’ (a) shrunk? JAMA. 1993;270(18):2224–5.

    Article  CAS  PubMed  Google Scholar 

  12. The Emerging Risk Factors Collaboration. Major lipids, apolipoproteins, and risk of vascular disease. JAMA. 2009;302(18):1993–2000.

    Google Scholar 

  13. Cardis E, Richardson L, Deltour I, Armstrong B, Feychting M, Johansen C, et al. The INTERPHONE study: design, epidemiological methods, and description of the study population. Eur J Epidemiol. 2007;22(9):647–64.

    Article  PubMed  Google Scholar 

  14. Thompson A, Di Angelantonio E, Sarwar N, Erqou S, Saleheen D, Dullaart RP, et al. Association of cholesteryl ester transfer protein genotypes with CETP mass and activity, lipid levels, and coronary risk. JAMA. 2008;299(23):2777–88.

    Article  CAS  PubMed  Google Scholar 

  15. Zintzaras E, Lau J. Trends in meta-analysis of genetic association studies. J Hum Genet. 2008;53(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  16. Hunter DJ, Riboli E, Haiman CA, Albanes D, Altshuler D, Chanock SJ, et al. A candidate gene approach to searching for low-penetrance breast and prostate cancer genes. Nat Rev Cancer. 2005;5(12):977–85.

    Article  CAS  PubMed  Google Scholar 

  17. National Cancer Institute Cohort Consortium. http://epi.grants.cancer.gov/Consortia/cohort.html. Accessed 29 Nov 2009.

  18. Setiawan VW, Schumacher FR, Haiman CA, Stram DO, Albanes D, Altshuler D, et al. CYP17 genetic variation and risk of breast and prostate cancer from the National Cancer Institute Breast and Prostate Cancer Cohort Consortium (BPC3). Cancer Epidemiol Biomarkers Prev. 2007;16(11):2237–46.

    Article  CAS  PubMed  Google Scholar 

  19. Canzian F, Kaaks R, Cox DG, Henderson KD, Henderson BE, Berg C, et al. Genetic polymorphisms of the GNRH1 and GNRHR genes and risk of breast cancer in the National Cancer Institute Breast and Prostate Cancer Cohort Consortium (BPC3). BMC Cancer. 2009;9:257.

    Article  PubMed  Google Scholar 

  20. European Network for Genetic and Genomic Epidemiology (ENGAGE). http://www.euengage.org. Accessed 29 Nov 2009.

  21. Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey SG. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27(8):1133–63.

    Article  PubMed  Google Scholar 

  22. Casas JP, Shah T, Hingorani AD, Danesh J, Pepys MB. C-reactive protein and coronary heart disease: a critical review. J Intern Med. 2008;264(4):295–314.

    Google Scholar 

  23. CRP CHD Genetics Collaboration. Collaborative pooled analysis of data on C-reactive protein gene variants and coronary disease: judging causality by Mendelian randomisation. Eur J Epidemiol. 2008;23(8):531–40.

    Article  Google Scholar 

  24. Hunter DJ. Gene-environment interactions in human diseases. Nat Rev Genet. 2005;6(4):287–98.

    Article  CAS  PubMed  Google Scholar 

  25. Bingham S, Riboli E. Diet and cancer—the European prospective investigation into cancer and nutrition. Nat Rev Cancer. 2004;4(3):206–15.

    Article  CAS  PubMed  Google Scholar 

  26. The EPIC-Heart Secretariat. EPIC-Heart: the cardiovascular component of a prospective study of nutritional, lifestyle and biological factors in 520,000 middle-aged participants from 10 European countries. Eur J Epidemiol. 2007;22(2):129–41.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Thompson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, A. Thinking big: large-scale collaborative research in observational epidemiology. Eur J Epidemiol 24, 727–731 (2009). https://doi.org/10.1007/s10654-009-9412-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-009-9412-1

Keywords

Navigation