Skip to main content

Advertisement

Log in

Associations of birth size and duration of breast feeding with cardiorespiratory fitness in childhood: findings from the Avon Longitudinal Study of Parents and Children (ALSPAC)

  • DEVELOPMENTAL EPIDEMIOLOGY
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

Objectives: To explore the developmental origins of cardiorespiratory fitness. Methods: We examined the associations of birth size and duration of breast feeding with cardiorespiratory fitness assessed at the 9 year follow-up examination in 3612 participants of the Avon Longitudinal Study of Parents and Children (ALSPAC). We used physical work capacity at a heart rate of 170 beats per minute (PWC170) as our assessment of cardiorespiratory fitness. This was estimated using standard regression methods from parameters measured using an electronically braked cycle ergometer. Results: Birth weight, length and ponderal index were all positively associated with cardiorespiratory fitness in both sexes, with no strong evidence of a difference in effect between girls and boys. Work capacity increased by 1.12 W (95% CI: 0.83, 1.40) on average per 1 standard deviation (SD) greater birth weight. This association was not affected by adjustment for socioeconomic position and maternal smoking during pregnancy; there was some attenuation with adjustment for both maternal and paternal height and body mass index and more marked attenuation with adjustment for the child’s height and body mass index. In the fully adjusted model work capacity increased by 0.51 W (95% CI: 0.21, 0.81) per SD birth weight. Whether an individual had been breastfed and duration of breastfeeding were not associated with cardiorespiratory fitness in any models. Conclusion: Our results provide some support for a role of intrauterine factors in determining cardiorespiratory fitness in childhood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

ALSPAC:

Avon Longitudinal Study of Parents and Children

BMI:

Body mass index

CI:

Confidence interval

PWC170 :

Physical Work Capacity at a heart rate of 170 beats per minute

OPCS:

Office of Population Census Statistics

SD:

Standard deviation

UK:

United Kingdom

References

  1. Slattery ML, Jacobs DRJ. Physical fitness and cardiovascular disease mortality: the US railroad study. Am J Epidemiol. 1988;127:571–80. Medline.

    PubMed  CAS  Google Scholar 

  2. Ekelund LG, Haskell WL, Johnson JL, Whaley FS, Criqui MH, Sheps DS. Physical fitness as a predictor of cardiovascular mortality in asymptomatic North American men: the Lipid Research Clinics Follow-up Study. NEJM. 1988;319:1379–84. Medline.

    PubMed  CAS  Google Scholar 

  3. Blair SN, Kohl HW, Paffenbarger RS, Clark DG, Cooper KH, Gibbons LW. Physical fitness and all-cause mortality: a prospective study of healthy men and women. JAMA. 1989;262:2395–401. doi:10.1001/jama.262.17.2395.

    Article  PubMed  CAS  Google Scholar 

  4. Sandvik L, Erikssen J, Thaulow E, Erikssen G, Mundal R, Rodahl K. Physical fitness as a predictor of mortality among healthy, middle-aged Norwegian men. NEJM. 1993;328(8):533–7. doi:10.1056/NEJM199302253280803.

    Article  PubMed  CAS  Google Scholar 

  5. Blair SN, Kohl HW, Barlow CE, Paffenbarger RS Jr, Gibbons LW, Macera CA. Changes in physical fitness and all-cause mortality. A prospective study of healthy and unhealthy men. JAMA. 1995;273:1093–8. doi:10.1001/jama.273.14.1093.

    Article  PubMed  CAS  Google Scholar 

  6. Blair SN, Kampert JB, Kohl HW, Barlow CE, Macera CA, Paffenbarger RSJ, et al. Influences of cardiorespiratory fitness and other precursors on cardiovascular disease and all-cause mortality in men and women. JAMA. 1996;276:205–10. doi:10.1001/jama.276.3.205.

    Article  PubMed  CAS  Google Scholar 

  7. Gulati M, Pandey DK, Arnsdorf MF, Lauderdale DS, Thisted RA, Wicklund RH, et al. Exercise capacity and the risk of death in women: the St. James Women Take Heart Project. Circulation. 2003;108:1554–9. doi:10.1161/01.CIR.0000091080.57509.E9.

    Article  PubMed  Google Scholar 

  8. Gulati M, Black HR, Shaw LJ, Arnsdorf MF, Merz CN, Lauer MS, et al. The prognostic value of a nomogram for exercise capacity in women. NEJM. 2005;353:468–475. doi:10.1056/NEJMoa044154.

    Article  PubMed  CAS  Google Scholar 

  9. Laaksonen DE, Lakka HM, Salonen JT, Niskanen LK, Rauramaa R, Lakka TA. Low levels of leisure-time physical activity and cardiorespiratory fitness predict development of the metabolic syndrome. Diabetes Care. 2002;25:1612–8. doi:10.2337/diacare.25.9.1612.

    Article  PubMed  Google Scholar 

  10. Evenson KR, Stevens J, Cai J, Thomas R, Thomas O. The effect of cardiorespiratory fitness and obesity on cancer mortality in women and men. Med Sci Sports Exerc. 2003;35:270–7. doi:10.1249/01.MSS.0000053511.02356.72.

    Article  PubMed  Google Scholar 

  11. Lee CD, Blair SN. Cardiorespiratory fitness and smoking-related and total cancer mortality in men. Med Sci Sports Exerc. 2002;34:735–9. doi:10.1097/00005768-200205000-00001.

    Article  PubMed  Google Scholar 

  12. Twisk JW, Kemper HC, van MW. Tracking of activity and fitness and the relationship with cardiovascular disease risk factors. Med Sci Sports Exerc 2000; 32:1455–61. doi:10.1097/00005768-200008000-00014

  13. Ferreira I, Henry RM, Twisk JW, van MW, Kemper HC, Stehouwer CD. The metabolic syndrome, cardiopulmonary fitness, and subcutaneous trunk fat as independent determinants of arterial stiffness: the Amsterdam Growth and Health Longitudinal Study. Arch Intern Med. 2005; 165:875–82. doi:10.1001/archinte.165.8.875

  14. Ferreira I, Twisk JW, van MW, Kemper HC, Stehouwer CD. Development of fatness, fitness, and lifestyle from adolescence to the age of 36 years: determinants of the metabolic syndrome in young adults: the Amsterdam growth and health longitudinal study. Arch Intern Med. 2005; 165:42–8. doi:10.1001/archinte.165.1.42

  15. Ferreira I, Twisk JW, Stehouwer CD, van MW, Kemper HC. Longitudinal changes in. VO2max: associations with carotid IMT and arterial stiffness. Med Sci Sports Exerc. 2003; 35:1670–8. doi:10.1249/01.MSS.0000089247.37563.4B

  16. Carnethon MR, Gulati M, Greenland P. Prevalence and cardiovascular disease correlates of low cardiorespiratory fitness in adolescents and adults. JAMA. 2005;294:2981–8. doi:10.1001/jama.294.23.2981.

    Article  PubMed  CAS  Google Scholar 

  17. Carnethon MR, Gidding SS, Nehgme R, Sidney S, Jacobs DR Jr, Liu K. Cardiorespiratory fitness in young adulthood and the development of cardiovascular disease risk factors. JAMA. 2003;290:3092–100. doi:10.1001/jama.290.23.3092.

    Article  PubMed  CAS  Google Scholar 

  18. Ferreira I, Twisk JW, van MW, Kemper HC, Stehouwer CD. Current and adolescent levels of cardiopulmonary fitness are related to large artery properties at age 36: the Amsterdam Growth and Health Longitudinal Study. Eur J Clin Invest. 2002; 32:723–31. doi:10.1046/j.1365-2362.2002.01066.x

  19. Bouchard C, Rankinen T, Chagnon YC, Rice T, Perusse L, Gagnon J, et al. Genomic scan for maximal oxygen uptake and its response to training in the HERITAGE Family Study. J Appl Physiol. 2000;88:551–9. Medline.

    PubMed  CAS  Google Scholar 

  20. Montgomery HE, Marshall R, Hemingway H, Myerson S, Clarkson P, Dollery C, et al. Human gene for physical performance. Nature. 1998;393:221–2. doi:10.1038/30374.

    Article  PubMed  CAS  Google Scholar 

  21. Boreham C, Twisk J, van Mechelen W, Savage M, Strain J, Cran G. Relationships between the development of biological risk factors for coronary heart disease and lifestyle parameters during adolescence: The Northern Ireland Young Hearts Project. Public Health. 1999;113:7–12. doi:10.1016/S0033-3506(99) 00106-7.

    Article  PubMed  CAS  Google Scholar 

  22. Janz KF, Mahoney LT. Three-year follow-up of changes in aerobic fitness during puberty: the Muscatine Study. Res Q Exerc Sport. 1997;68:1–9. Medline.

    PubMed  CAS  Google Scholar 

  23. Phillips DI, Barker DJ. Association between low birthweight and high resting pulse in adult life: is the sympathetic nervous system involved in programming the insulin resistance syndrome? Diabet Med. 1997;14:673–7. doi:10.1002/(SICI) 1096-9136(199708) 14:8≤673::AID-DIA458≥3.0.CO;2-9.

    Article  PubMed  CAS  Google Scholar 

  24. Boreham CA, Murray L, Dedman D, Davey Smith G, Savage JM, Strain JJ. Birthweight and aerobic fitness in adolescents: the Northern Ireland Young Hearts Project. Public Health. 2001;115:373–9. Medline.

    PubMed  CAS  Google Scholar 

  25. Lawlor DA, Riddoch CJ, Page AS, Andersen LB, Wedderkopp N, Harro M, et al. Infant feeding and components of the metabolic syndrome: findings from the European Youth Heart Study. Arch Dis Child. 2005;90:582–8. doi:10.1136/adc.2004.055335.

    Article  PubMed  CAS  Google Scholar 

  26. Martin RM, Ness AR, Gunnell D, Emmett P, Davey Smith G for the ALSPAC Study Team. Does breast-feeding in infancy lower blood pressure in childhood? The Avon Longitudinal Study of Parents and Children (ALSPAC). Circulation. 2004;109:1259–66. doi:10.1161/01.CIR.0000118468.76447.CE

    Google Scholar 

  27. Rudnicka AR, Owen CG, Strachan DP. The effect of breastfeeding on cardiorespiratory risk factors in adult life. Pediatrics. 2007;119:e1107–15. doi:10.1542/peds.2006-2149.

    Article  PubMed  Google Scholar 

  28. Owen CG, Martin RM, Whincup PH, Davey Smith G, Gillman MW, Cook DG. The effect of infant feeding on mean body mass index throughout the lifecourse; a quantitative review of observational evidence. Am J Clin Nutr. 2005;82:1298–307. Medline.

    PubMed  CAS  Google Scholar 

  29. Kramer M, Matush L, Vanilovich I, Platt R, Bogdanovich N, Sevkovskaya Z, et al. Long-term effects of prolonged and exclusive breastfeeding on child height, weight, adiposity, and blood pressure: new evidence from a large randomized trial. Am J Clin Nutr. 2007;86:1717–21. Medline.

    PubMed  CAS  Google Scholar 

  30. Haas JD, Murdoch S, Rivera J, Martorell R. Early nutrition and later physical work capacity. Nutr Rev. 1996;54:S41–8. Medline.

    Article  PubMed  CAS  Google Scholar 

  31. Satyanarayana K, Naidu AN, Narasinga Rao BS. Nutritional deprivation in childhood and the body size, activity, and physical work capacity of young boys. Am J Clin Nutr. 1979;32:1769–75. Medline.

    PubMed  CAS  Google Scholar 

  32. Spurr GB. Body size, physical work capacity and productivity in hard work: is bigger better? In: Waterlow J, editor. Linear growth retardation in less developed countries. Nestle Nutrition Workshop Series, vol. Vol 14. New York: Vevey/Raven Press; 1988. p. 215–43.

    Google Scholar 

  33. Golding J, Pembrey M, Jones R. ALSPAC—the Avon Longitudinal Study of Parents and Children. I. Study methodology. Paediatr Perinat Epidemiol. 2001;15:74–87. doi:10.1046/j.1365-3016.2001.00325.x.

    Article  PubMed  CAS  Google Scholar 

  34. Boreham CA, Paliczka VJ, Nichols AK. A comparison of the PWC170 and 20-MST tests of aerobic fitness in adolescent schoolchildren. J Sports Med Phys Fitness. 1990;30:19–23. Medline

    PubMed  CAS  Google Scholar 

  35. Fogel RW. Health, human capital and economic growth. Washington DC: Pan American Health Organisation; 2002.

    Google Scholar 

  36. Fogel RW. Catching up with the economy. Am Econ Rev. 1999;89:1–21.

    Google Scholar 

  37. Royston P. Multiple imputation of missing values. Stata J. 2004;4:227–41.

    Google Scholar 

  38. Hansen SE, Hasselstrom H, Gronfeldt V, Froberg K, Andersen LB. Cardiovascular disease risk factors in 6–7-year-old Danish children: the Copenhagen School Child Intervention Study. Prev Med. 2005;40:740–6. doi:10.1016/j.ypmed.2004.09.017.

    Article  PubMed  Google Scholar 

  39. Wedderkopp N, Froberg K, Hansen HS, Andersen LB. Secular trends in physical fitness and obesity in Danish 9-year-old girls and boys: Odense School Child Study and Danish substudy of the European Youth Heart Study. Scand J Med Sci Sports. 2004;14:150–5. doi:10.1111/j.1600-0838.2004.00365.x.

    Article  PubMed  CAS  Google Scholar 

  40. Vijayakumar M, Fall CH, Osmond C, Barker DJ. Birth weight, weight at one year, and left ventricular mass in adult life. Br Heart J. 1995;73:363–7. doi:10.1136/hrt.73.4.363.

    Article  PubMed  CAS  Google Scholar 

  41. Lawlor DA, Ebrahim S, Davey Smith G. Association of birth weight with adult lung function: findings from the British Women’s Heart and Health Study and a meta-analysis. Thorax. 2005;60:851–8. doi:10.1136/thx.2005.042408.

    Article  PubMed  CAS  Google Scholar 

  42. Lawlor DA, Ben-Shlomo Y, Leon DA. Pre-adult influences on cardiovascular disease. In: Kuh D, Ben-Shlomo Y, editors. A life course approach to chronic disease epidemiology. Oxford: Oxford University Press; 2004. p. 41–76.

    Google Scholar 

  43. Lawlor DA, Ronalds G, Clark H, Davey Smith G, Leon DA. Birthweight is inversely associated with incident coronary heart disease and stroke among individuals born in the 1950 s: findings from the Aberdeen Children of the 1950 s prospective cohort study. Circulation. 2005;112:1414–1420. doi:10.1161/CIRCULATIONAHA.104.528356.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements and Funding

We are extremely grateful to all the families who took part in this study, the midwives for their help in recruiting them, and the whole ALSPAC team, which includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists and nurses. The UK Medical Research Council, the Wellcome Trust and the University of Bristol provide core funding support for ALSPAC. This research was specifically funded by a grant from the US National Institute of Health. DAL receives funding from a UK Department of Health Career Scientist Award. CB was supported by a Leverhulme Visiting Fellowship Award during the time that he contributed to this work. This publication is the work of the authors who also serve as guarantors for the contents of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debbie A. Lawlor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawlor, D.A., Cooper, A.R., Bain, C. et al. Associations of birth size and duration of breast feeding with cardiorespiratory fitness in childhood: findings from the Avon Longitudinal Study of Parents and Children (ALSPAC). Eur J Epidemiol 23, 411–422 (2008). https://doi.org/10.1007/s10654-008-9259-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-008-9259-x

Key words

Navigation