Skip to main content
Log in

Using Electroencephalography to Measure Cognitive Load

  • Review Article
  • Published:
Educational Psychology Review Aims and scope Submit manuscript

Abstract

Application of physiological methods, in particular electroencephalography (EEG), offers new and promising approaches to educational psychology research. EEG is identified as a physiological index that can serve as an online, continuous measure of cognitive load detecting subtle fluctuations in instantaneous load, which can help explain effects of instructional interventions when measures of overall cognitive load fail to reflect such differences in cognitive processing. This paper presents a review of seminal literature on the use of continuous EEG to measure cognitive load and describes two case studies on learning from hypertext and multimedia that employed EEG methodology to collect and analyze cognitive load data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson, C.W., Bratman, J.A. 2008. Translating thoughts into actions by finding patterns in brainwave. In Proceedings of the Fourteenth Yale Workshop on Adaptive and Learning Systems, Yale University, New Haven, CT, June 2008, pp. 1–6.

  • Andreassi, J. (2007). Psychophysiology: Human behavior and physiological response. Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Antonenko, P., & Niederhauser, D. (2010). The effects of leads on cognitive load and learning in a hypertext environment. Computers in Human Behavior, 26, 140–150.

    Article  Google Scholar 

  • Ayres, P. (2006). Impact of reducing intrinsic cognitive load on learning in a mathematical domain. Applied Cognitive Psychology, 20, 287–298.

    Article  Google Scholar 

  • Basar, E. (1980). EEG brain dynamics: Relation between EEG and brain evoked potentials. Amsterdam: Elsevier.

    Google Scholar 

  • Basar, E. (1999). Brain function and oscillations. Integrative brain functions. Neurophysiology and Cognitive Processes, Vol. 2. Berlin: Springer.

    Google Scholar 

  • Berka, C., Levendowski, D. J., Olmstead, R. E., Popovic, M. V., Cvetinovic, M., & Petrovic, M. M. (2004). Real-time analysis of EEG indices of alertness, cognition, and memory with a wireless EEG headset. International Journal of Human-Computer Interaction, 17, 151–170.

    Article  Google Scholar 

  • Blom, J. L., & Anneveldt, M. (1982). An electrode cap tested. Electroencephalography and Clinical Neuropsychology, 54, 591–594.

    Article  Google Scholar 

  • Bruer, J. T. (1997). Education and the brain: A bridge to far. Educational Researcher, 26, 4–16.

    Google Scholar 

  • Brünken, R., Plass, J. L., & Leutner, D. (2003). Direct measurement of cognitive load in multimedia learning. Educational Psychologist, 38, 53–61.

    Article  Google Scholar 

  • Chandler, P., & Sweller, J. (1992). The split-attention effect as a factor in the design of instruction. British Journal of Educational Psychology, 62, 233–246.

    Google Scholar 

  • Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 87–114.

    Article  Google Scholar 

  • Gale, A., & Christie, B. (1987). Psychophysiology and the electronic workplace. London: Wiley.

    Google Scholar 

  • Gerlic, I., & Jausovec, N. (1999). Multimedia: Differences in cognitive processes observed with EEG. Educational Technology Research and Development, 47(3), 5–14.

    Article  Google Scholar 

  • Gevins, A., & Smith, M. E. (2000). Neurophysiological measures of working memory and individual differences in cognitive ability and cognitive style. Cerebral Cortex, 10, 829–839.

    Article  Google Scholar 

  • Gevins, A., & Smith, M. E. (2003). Neurophysiological measures of cognitive workload during human-computer interactions. Theoretical Issues in Ergonomic Science, 4, 113–131.

    Article  Google Scholar 

  • Gevins, A., Smith, M. E., McEvoy, L., & Yu, D. (1997). High-resolution EEG mapping of cortical activation related to working memory: Effects of task difficulty, type of processing, and practice. Cerebral Cortex, 7, 374–385.

    Article  Google Scholar 

  • Glanzer, M., Fischer, B., & Dorfman, D. (1984). Short-term storage in reading. Journal of Verbal Learning and Verbal Behavior, 23, 467–486.

    Article  Google Scholar 

  • Goldstein, R., Bauer, L. O., & Stern, J. A. (1992). Effect of task difficulty and interstimulus interval on blink parameters. International Journal of Psychophysiology, 13, 111–117.

    Article  Google Scholar 

  • Grabner, R. H., Fink, A., Stipacek, A., Neuper, C., & Neubauer, A. C. (2004). Intelligence and working memory systems: Evidence of neural efficiency in alpha band ERD. Cognitive Brain Research, 20, 212–225.

    Article  Google Scholar 

  • Grabner, R. H., Neubauer, A. C., & Stern, E. (2006). Superior performance and neural efficiency: The impact of intelligence and expertise. Brain Research Bulletin, 69, 422–439.

    Article  Google Scholar 

  • Haier, R. J., Siegel, B., Tang, C., Abel, L., & Buchsbaum, M. S. (1992). Intelligence and changes in regional cerebral glucose metabolic rate following learning. Intelligence, 16, 415–426.

    Article  Google Scholar 

  • Hart, S. G., & Staveland, L. E. (1988). Development of a multi-dimensional workload rating scale: Results of empirical and theoretical research. In P. A. Hancock & N. Meshkati (Eds.), Human mental workload (pp. 139–183). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Iqbal, S. T., Zheng, X. S., Bailey, B. P. (2004). Task-evoked pupillary response to mental workload in human-computer interaction. In E. Dykstra-Erickson & M. Tscheligi (Eds.), Proceedings of the ACM Conference on Human Factors in Computing Systems (pp. 1477–1480). Vienna: Austria.

  • Jasper, H. A. (1958). The ten–twenty system of the International Federation. Electroencephalography and Clinical Neurophysiology, 10, 371–375.

    Google Scholar 

  • Jensen, O., & Tesche, C. D. (2002). Frontal theta activity in humans increases with memory load in a working memory task. European Journal of Neuroscience, 15, 1395–1399.

    Article  Google Scholar 

  • Kahana, M. J., Seelig, D., & Madsen, J. R. (2001). Theta returns. Current Opinion in Neurobiology, 11, 739–744.

    Article  Google Scholar 

  • Kalyuga, S., Chandler, P., Tuovinen, J., & Sweller, J. (2001). When problem solving is superior to studying worked examples. Journal of Educational Psychology, 93, 579–588.

    Article  Google Scholar 

  • Klimesch, W. (1997). EEG-alpha rhythms and memory processes. International Journal of Psychophysiology, 26(1–3), 319–340.

    Article  Google Scholar 

  • Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews, 29, 169–195.

    Article  Google Scholar 

  • Klimesch, W., Doppelmayr, M., Pachinger, T., & Ripper, B. (1997). Brain oscillations and human memory: EEG correlates in the upper alpha and theta band. Neuroscience Letters, 238(1–2), 9–12.

    Article  Google Scholar 

  • Klimesch, W., Schack, B., & Sauseng, P. (2005). The functional significance of theta and upper alpha oscillations for working memory: A review. Experimental Psychology, 52, 99–108.

    Google Scholar 

  • Klimesch, W., Doppelmayr, M., Hanslmayr, S., Christa, N., & Wolfgang, K. (2006). Upper alpha ERD and absolute power: their meaning for memory performance. Prog Brain Res, 159, 151–165. Elsevier.

    Article  Google Scholar 

  • Krashen, S. (1982). Principles and practice in second language acquisition. New York: Prentice-Hall.

    Google Scholar 

  • Lee, J., & Tan, D. (2006). Using a low-cost electroencephalograph for task classification in HCI research. In P. Wellner & K. Hinckley (Eds.), Proceedings of the ACM Symposium on User Interface Software and Technology. Montreux: Switzerland.

  • Lorch, R. F., Jr. (1993). Integration of topic and subordinate information during reading. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19, 1071–1081.

    Article  Google Scholar 

  • Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63, 81–97.

    Article  Google Scholar 

  • Neubauer, A. C., & Fink, A. (2003). Fluid intelligence and neural efficiency: effects of task complexity and sex. Personality and Individual Differences, 35, 811–827. doi:PiiS0191-8869(02)00285-4.

    Article  Google Scholar 

  • Neubauer, V., Freudenthaler, H. H., & Pfurtscheller, G. (1995). Intelligence and spatiotemporal patterns of event-related desynchronization. Intelligence, 3, 249–266.

    Article  Google Scholar 

  • Neubauer, A. C., Fink, A., Grabner, R. H., Christa, N., & Wolfgang, K. (2006). Sensitivity of alpha band ERD to individual differences in cognition. Progress in Brain Research, 159, 167–178.

    Article  Google Scholar 

  • Neuper, C., & Pfurtscheller, G. (2001). Event-related dynamics of cortical rhythms: Frequency-specific features and functional correlates. International Journal of Psychophysiology, 43, 41–58.

    Article  Google Scholar 

  • Niedermeyer, E. (1993). The normal EEG of the waking adult. In E. Niedermeyer & F. Lopes da Silva (Eds.), Electroencephalography: Basic principles, clinical applications, and related fields (pp. 131–152). Baltimore, MD: Williams & Wilkins.

    Google Scholar 

  • Nunez, P. L. (1995). Neocortical dynamics and human EEG rhythms. New York: Oxford University Press.

    Google Scholar 

  • O'Boyle, M. W., Benbow, C. P., & Alexander, J. E. (1995). Sex differences, hemispheric laterality, and associated brain activity in the intellectually gifted. Developmental Neuropsychology, 4, 415–443.

    Article  Google Scholar 

  • Paas, F. (1992). Training strategies for attaining transfer of problem-solving skill in statistics: A cognitive-load approach. Journal of Educational Psychology, 84, 429–434.

    Article  Google Scholar 

  • Paas, F., & Van Merriënboer, J. J. G. (1993). The efficiency of instructional conditions: An approach to combine mental effort and performance measures. Human Factors, 35, 737–743.

    Google Scholar 

  • Paas, F., & Van Merriënboer, J. J. G. (1994). Variability of worked examples and transfer of geometrical problem solving skills: A cognitive-load approach. Journal of Educational Psychology, 86, 122–133.

    Article  Google Scholar 

  • Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design: Recent developments. Educational Psychologist, 38, 1–4.

    Article  Google Scholar 

  • Paas, F., Tuovinen, J., Tabbers, H., & Van Gerven, P. W. M. (2003). Cognitive load measurement as a means to advance cognitive load theory. Educational Psychologist, 38, 63–72.

    Article  Google Scholar 

  • Paas, F., Van Merriënboer, J. J. G., & Adam, J. J. (1994). Measurement of cognitive load in instructional research. Perceptual and Motor Skills, 79, 419–430.

    Google Scholar 

  • Paas, F., Ayres, P., Pachman, M. 2008. Assessment of cognitive load in multimedia learning: Theory, methods and applications. In D.H. Robinson, G. Schraw (Eds.), Recent innovations in educational technology that facilitate student learning (pp. 11–35). Information Age Publishing.

  • Penfield, W., & Jasper, H. (1954). Epilepsy and the functional anatomy of the human brain. Boston: Little Brown.

    Google Scholar 

  • Peterson, L., & Peterson, M. (1959). Short-term retention of individual verbal items. Journal of Experimental Psychology, 58, 193–198.

    Article  Google Scholar 

  • Pfurtscheller, G., & Aranibar, A. (1977). Event-related cortical desynchronization detected by power measurements of scalp EEG. Electroencephalography and Clinical Neurophysiology, 42, 817–826.

    Article  Google Scholar 

  • Pfurtscheller, G., & Berghold, A. (1989). Patterns of cortical activation during planning of voluntary movement. Electroencephalography and Clinical Neurophysiology, 2, 250–258.

    Article  Google Scholar 

  • Pfurtscheller, G., & Lopes da Silva, F. H. (2005). Event-related desynchronization (ERD) and event-related synchronization (ERS). In E. Niedermeyer & F. H. Lopes da Silva (Eds.), Electroencephalography: Basic principles, clinical applications and related fields (5th ed., pp. 1003–1016). Philadelphia, PA: Lippincott, Williams & Wilkins.

    Google Scholar 

  • Sauseng, P., Klimesch, W., Doppelmayr, M., Pecherstorfer, T., Freunberger, R., & Hanslmayr, S. (2005). EEG alpha synchronization and functional coupling during top-down processing in a working memory task. Human Brain Mapping, 26, 148–155.

    Article  Google Scholar 

  • Schultheis, H., & Jameson, A. (2004). Adaptive hypermedia and adaptive web-based systems. In W. Nejdl & P. De Bra (Eds.), Proceedings of Adaptive Hypermedia 2004 (pp. 225–234). Berlin: Springer.

  • Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing: II. Perceptual learning, automatic attending, and a general theory. Psychological Review, 84, 1–66.

    Article  Google Scholar 

  • Sterman, M. B., Mann, C. A., Kaiser, D. A., & Suyenobu, B. Y. (1994). Multiband topographic EEG analysis of a simulated visuomotor aviation task. International Journal of Psychophysiology, 16, 49–56.

    Article  Google Scholar 

  • Stevens, R., Galloway, T., & Berka, C. (2007). EEG-related changes in cognitive workload, engagement and distraction as students acquire problem solving skills. In C. Conati, K. McCoy, & G. Paliouras (Eds.) User Modeling 2007. Lecture Notes in Artificial Intelligence, 4511, 197–206.

    Google Scholar 

  • Stipacek, A., Grabner, R. H., Neuper, C., Fink, A., & Neubauer, A. C. (2003). Sensitivity of EEG alpha band desynchronization to different memory components and increasing levels of memory load. Neuroscience Letters, 353, 193–196.

    Article  Google Scholar 

  • Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12, 257–285.

    Article  Google Scholar 

  • Sweller, J. (2010). Element interactivity and intrinsic, extraneous and germane cognitive load. Accepted for publication in Educational Psychology Review. doi:10.1007/s10648-010-9128-5.

  • Sweller, J., van Merrienboer, J., & Paas, F. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10, 251–296.

    Article  Google Scholar 

  • Van Gerven, P. W. M., Paas, F., Van Merriënboer, J. J. G., & Schmidt, H. G. (2004). Memory load and the cognitive pupillary response in aging. Psychophysiology, 41, 167–174.

    Article  Google Scholar 

  • Van Gog, T., & Paas, F. (2008). Instructional efficiency: Revisiting the original construct in educational research. Educational Psychologist, 43, 16–26.

    Google Scholar 

  • Van Gog, T., Paas, F., & Van Merriënboer, J. J. G. (2006). Effects of process-oriented worked examples on troubleshooting transfer performance. Learning and Instruction, 16, 154–164.

    Article  Google Scholar 

  • Van Gog, T., Paas, F., & Van Merriënboer, J. J. G. (2008). Effects of studying sequences of process-oriented and product-oriented worked examples on troubleshooting transfer efficiency. Learning and Instruction, 18, 211–222.

    Article  Google Scholar 

  • Van Gog, T., Kester, L., Nievelstein, F., Giesbers, B., & Paas, F. (2009). Uncovering cognitive processes: Different techniques that can contribute to cognitive load research and instruction. Computers in Human Behavior, 25, 325–331.

    Article  Google Scholar 

  • Van Merriënboer, J. J. G., Schuurman, J. G., De Croock, M. B. M., & Paas, F. (2002). Redirecting learners attention during training: Effects on cognitive load, transfer test performance and training efficiency. Learning and Instruction, 12, 11–37.

    Article  Google Scholar 

  • Wilson, G. F., & Eggemeier, F. T. (1991). Physiological measures of workload in multi-task environments. In D. Damos (Ed.), Multiple-task performance (pp. 329–360). London: Taylor & Francis.

    Google Scholar 

  • Xie, B., & Salvendy, G. (2000). Review and reappraisal of modeling and predicting mental workload in single- and multi-task environments. Work and Stress, 14, 74–99.

    Article  Google Scholar 

Download references

Acknowledgement

During the realization of this work Tamara van Gog was supported by a Veni grant from the Netherlands Organization for Scientific Research (NWO; grant nr. 451-08-003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavlo Antonenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antonenko, P., Paas, F., Grabner, R. et al. Using Electroencephalography to Measure Cognitive Load. Educ Psychol Rev 22, 425–438 (2010). https://doi.org/10.1007/s10648-010-9130-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10648-010-9130-y

Keywords

Navigation