Skip to main content
Log in

Glucagon-like Peptide-2 Induces a Specific Pattern of Adaptation in Remnant Jejunum

  • Original Paper
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Glucagon-like peptide-2 (GLP-2) is an enteroendocrine hormone which is uniquely trophic for the intestine; a physiological role in regulating nutrient absorptive capacity is becoming apparent. GLP-2, independent of enteral feeding, stimulates a classical pattern of intestinal adaptation in terminal ileum following resection. Herein we investigate the effects of GLP-2 on the jejunal remant using a rat model of short bowel syndrome (SBS). Juvenile 250- to 275-g SD rats underwent 80% distal small bowel resection, leaving 20 cm of proximal jejunum and venous catheterization. Animals were maintained with total parenteral nutrition (TPN) or TPN+10 μg/kg/hr GLP-2 (n=8 per group). After 7 days, intestinal permeability was assessed by urinary recovery of gavaged carbohydrate probes. Animals were euthanized, and the intestines taken for analysis of morphology, crypt cell proliferation, apoptosis, and expression of SGLT-1 and GLUT-5 transport proteins. GLP-2 treatment reduced intestinal permeability and increased in vivo glucose absorption, small intestinal weight, surface area, villus height, crypt depth, and microvillus height. Intestinal mucosal DNA and protein content per unit length of the small bowel were increased (P < 0.05 for all comparisons). However, in contrast to previous studies examining GLP-2’s effects on remnant ileum, the jejunal crypt apoptotic index was increased in GLP-2-treated animals, with no increase in SGLT-1 or GLUT 5 expression. These results show that exogenous GLP-2 treatment of animals with jejunal remnant reduces intestinal permeability, increases glucose absorption, and stimulates morphological features of intestinal adaptation including increased micovillus height and surface area. However, the pattern of changes seen is different from that in remnant ileum. This suggests that GLP-2’s effects are specific to different regions of the bowel. Nonetheless, remnant jejunum is responsive to GLP-2 in the absence of enteral nutrition. Further studies are warranted to establish the mechanisms of action and therapeutic potential of GLP-2 in modulating nutrient absorptive capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dowling RBC (1967) Structural and functional changes following small intestinal resection in the rat. Clin Sci 32:139–143

    PubMed  CAS  Google Scholar 

  2. Sigalet DL (2001) Short bowel syndrome in infants and children: an overview. Semin Pediatr Surg 10(2):49–55

    Article  PubMed  CAS  Google Scholar 

  3. Williamson RC (1978) Intestinal adaptation I and II. N Engl J Med 298:1393–1450

    Article  PubMed  CAS  Google Scholar 

  4. Mayo KE, Miller LJ, Bataille D, et al. (2003) International Union of Pharmacology. XXXV. The glucagon receptor family. Pharmacol Rev 55(1):167–194

    Article  PubMed  CAS  Google Scholar 

  5. Brubaker PL, Izzo A, Hill M, Drucker DJ (1997) Intestinal function in mice with small bowel growth induced by glucagon-like peptide-2. Am J Physiol 272(6, Pt 1):E1050–E1058

    PubMed  CAS  Google Scholar 

  6. Drucker DJ, Erlich P, Asa SL, Brubaker PL (1996) Induction of intestinal epithelial proliferation by glucagon-like peptide 2. Proc Natl Acad Sci USA 93(15):7911–7916

    Article  PubMed  CAS  Google Scholar 

  7. Orskov C, Holst JJ, Knuhtsen S, Baldissera FG, Poulsen SS, Nielsen OV (1986) Glucagon-like peptides GLP-1 and GLP-2, predicted products of the glucagon gene, are secreted separately from pig small intestine but not pancreas. Endocrinology 119(4):1467–1475

    PubMed  CAS  Google Scholar 

  8. Roberge JN, Brubaker PL (1991) Secretion of proglucagon-derived peptides in response to intestinal luminal nutrients. Endocrinology 128(6):3169–3174

    Article  PubMed  CAS  Google Scholar 

  9. Rocca AS, Brubaker PL (1999) Role of the vagus nerve in mediating proximal nutrient-induced glucagon-like peptide-1 secretion. Endocrinology 140(4):1687–1694

    Article  PubMed  CAS  Google Scholar 

  10. Drucker DJ (2002) Biological actions and therapeutic potential of the glucagon-like peptides. Gastroenterology 122(2):531–544

    Article  PubMed  CAS  Google Scholar 

  11. Sigalet DL (2001) ALX-0600 (NPS Allelix Corp). Curr Opin Invest Drugs 2(4):505–509

    CAS  Google Scholar 

  12. Brubaker PL, Schloos J, Drucker DJ (1998) Regulation of glucagon-like peptide-1 synthesis and secretion in the GLUTag enteroendocrine cell line. Endocrinology 139(10):4108–4114

    Article  PubMed  CAS  Google Scholar 

  13. Martin GR, Wallace LE, Hartmann B, et al. (2005) Nutrient-stimulated GLP-2 release and crypt cell proliferation in experimental short bowel syndrome. Am J Physiol Gastrointest Liver Physiol 288(3):G431–G438

    Article  PubMed  CAS  Google Scholar 

  14. Bozkurt A, Naslund E, Holst JJ, Hellstrom PM (2002) GLP-1 and GLP-2 act in concert to inhibit fasted, but not fed, small bowel motility in the rat. Regul Pept 107(1–3):129–135

    Article  PubMed  CAS  Google Scholar 

  15. Ljungmann K, Hartmann B, Kissmeyer-Nielsen P, Flyvbjerg A, Holst JJ, Laurberg S (2001) Time-dependent intestinal adaptation and GLP-2 alterations after small bowel resection in rats. Am J Physiol Gastrointest Liver Physiol 281(3):G779–G785

    PubMed  CAS  Google Scholar 

  16. Munroe DG, Gupta AK, Kooshesh F, et al. (1999) Prototypic G protein-coupled receptor for the intestinotrophic factor glucagon-like peptide 2. Proc Natl Acad Sci USA 96(4):1569–1573

    Article  PubMed  CAS  Google Scholar 

  17. Bjerknes M, Cheng H (2001) Modulation of specific intestinal epithelial progenitors by enteric neurons. Proc Natl Acad Sci USA 98:12497–12502

    Article  PubMed  CAS  Google Scholar 

  18. Wallace LE, Martin G, Swain MG, Sharkey KA, Sigalet DL (2004) Acute GLP-2 treatment induces effects in both peripheral and central nervous systems. Can J Gastroenterol 18:A120

    Google Scholar 

  19. Ramsanahie A, Duxbury MS, Grikscheit TC, et al. (2003) Effect of GLP-2 on mucosal morphology and SGLT1 expression in tissue-engineered neointestine. Am J Physiol Gastrointest Liver Physiol 285(6):G1345–G1352

    PubMed  CAS  Google Scholar 

  20. Rocha FG, Shen KR, Jasleen J, et al. (2004) Glucagon-like peptide-2: divergent signaling pathways. J Surg Res 121(1):5–12

    Article  PubMed  CAS  Google Scholar 

  21. Walsh NA, Yusta B, DaCambra MP, Anini Y, Drucker DJ, Brubaker PL (2003) Glucagon-like peptide-2 receptor activation in the rat intestinal mucosa. Endocrinology 144(10):4385–4392

    Article  PubMed  CAS  Google Scholar 

  22. Yusta B, Huang L, Munroe D, et al. (2000) Enteroendocrine localization of GLP-2 receptor expression in humans and rodents. Gastroenterology 119(3):744–755

    Article  PubMed  CAS  Google Scholar 

  23. Cheeseman CI (1997) Upregulation of SGLT-1 transport activity in rat jejunum induced by GLP-2 infusion in vivo. Am J Physiol 273(6, Pt 2):R1965–R1971

    PubMed  CAS  Google Scholar 

  24. Guan X, Stoll B, Lu X, et al. (2003) GLP-2-mediated up-regulation of intestinal blood flow and glucose uptake is nitric oxide-dependent in TPN-fed piglets. Gastroenterology 125(1):136–147

    Article  PubMed  CAS  Google Scholar 

  25. Martin GR, Wallace LE, Sigalet DL (2004) Glucagon-like peptide-2 induces intestinal adaptation in parenterally fed rats with short bowel syndrome. Am J Physiol Gastrointest Liver Physiol 286(6):G964–G972

    Article  PubMed  CAS  Google Scholar 

  26. O’Brien DP, Nelson LA, Huang FS, Warner BW (2001) Intestinal adaptation: structure, function, and regulation. Semin Pediatr Surg 10(2):56–64

    Article  PubMed  CAS  Google Scholar 

  27. Jeppesen PB, Hartmann B, Hansen BS, Thulesen J, Holst JJ, Mortensen PB (1999) Impaired meal stimulated glucagon-like peptide 2 response in ileal resected short bowel patients with intestinal failure. Gut 45(4):559–563

    Article  PubMed  CAS  Google Scholar 

  28. Sigalet DL, Martin G, Meddings J, Hartman B, Holst JJ (2004) GLP-2 levels in infants with intestinal dysfunction. Pediatr Res 56(3):371–376

    Article  PubMed  CAS  Google Scholar 

  29. Topstad D, Martin G, Sigalet D (2001) Systemic GLP-2 levels do not limit adaptation after distal intestinal resection. J Pediatr Surg 36(5):750–754

    Article  PubMed  CAS  Google Scholar 

  30. Meddings JB, Gibbons I (1998) Discrimination of site-specific alterations in gastrointestinal permeability in the rat. Gastroenterology 114(1):83–92

    Article  PubMed  CAS  Google Scholar 

  31. Martin GR, Meddings JB, Sigalet DL (2003) 3-O Methylglucose absorption in vivo correlates with nutrient absorption and intestinal surface area in experimental short bowel syndrome. J Parenter Enteral Nutr 27(1):65–70

    Article  PubMed  CAS  Google Scholar 

  32. Menge H, Hopert R, Alexopoulos T, Riecken EO (1982) Three-dimensional structure and cell kinetics at different sites of rat intestinal remnants during the early adaptive response to resection. Res Exp Med (Berl) 181(2):77–94

    Article  CAS  Google Scholar 

  33. Sigalet DL, Martin GR, Poole A (2000) Differential sugar absorption as a marker for adaptation in short bowel syndrome. J Pediatr Surg 35(5):661–664

    Article  PubMed  CAS  Google Scholar 

  34. Chung BM, Wong JK, Hardin JA, Gall DG (1999) Role of actin in EGF-induced alterations in enterocyte SGLT1 expression. Am J Physiol 276(2, Pt 1):G463–G469

    PubMed  CAS  Google Scholar 

  35. Buret A, Gall DG, Olson ME (1991) Growth, activities of enzymes in the small intestine, and ultrastructure of microvillus border in gerbils infected with Giardia duodenalis. Parasitol Res 77(2):109–114

    Article  PubMed  CAS  Google Scholar 

  36. Cohn SM, Lieberman MW (1984) The use of antibodies to 5-bromo-2’-deoxyuridine for the isolation of DNA sequences containing excision-repair sites. J Biol Chem 259(20):12456–12462

    PubMed  CAS  Google Scholar 

  37. Potten CS, Loeffler M (1990) Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 110(4):1001–1020

    PubMed  CAS  Google Scholar 

  38. Musckhelishvili L, Latendresse JR, Kodell RL, Henderson EB (2003) Evaluation of cell proliferation in rat tissues with BrdU, PCNA, Ki-67(MIB-5) immunohistochemistry and in situ hybridization for histone mRNA. J Histochem Cytochem 51(12):1681–1688

    Google Scholar 

  39. Marshman E, Ottewell PD, Potten CS, Watson AJM (2001) Caspase activation during spontaneous and radiation–induced apoptosis in the murine intestine. J Pathol 195:285–292

    Article  PubMed  CAS  Google Scholar 

  40. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    PubMed  CAS  Google Scholar 

  41. Dunphy JL, Justice FA, Taylor RG Fuller PJ (1999) mRNA levels of dipeptidyl peptidase IV decrease during intestinal adaptation. J Surg Res 87:130–133

    Article  PubMed  CAS  Google Scholar 

  42. Burrin DG, Stoll B, Jiang R, et al. (2000) GLP-2 stimulates intestinal growth in premature TPN-fed pigs by suppressing proteolysis and apoptosis. Am J Physiol Gastrointest Liver Physiol 279(6):G1249–G1256

    PubMed  CAS  Google Scholar 

  43. Ramsanahie AP, Berger UV, Zinner MJ, Whang EE, Rhoads DB, Ashley SW (2004) Effect of glucagon-like peptide-2 (GLP-2) on diurnal SGLT1 expression. Dig Dis Sci 49(11–12):1731–1737

    Article  PubMed  CAS  Google Scholar 

  44. Jarboe MD, Juno RJ, Bernal NP, et al. (2004) Bax deficiency rescues resection-induced enterocyte apoptosis in mice with perturbed EGF receptor function. Surgery 136(2):121–126

    Article  PubMed  Google Scholar 

  45. Knott AW, O’Brien DP, Juno RJ, et al. (2003) Enterocyte apoptosis after enterectomy in mice is activated independent of the extrinsic death receptor pathway. Am J Physiol Gastrointest Liver Physiol 285(2):G404–G413

    PubMed  CAS  Google Scholar 

  46. Dahly EM, Guo Z, Ney DM (2002) Alterations in enterocyte proliferation and apoptosis accompany TPN-induced mucosal hypoplasia and IGF-I-induced hyperplasia in rats. J Nutr 132(7):2010–2014

    PubMed  CAS  Google Scholar 

  47. Tsai CH, Hill M, Asa SL, Brubaker PL, Drucker DJ (1997) Intestinal growth-promoting properties of glucagon-like peptide-2 in mice. Am J Physiol 273:E77–E84

    PubMed  CAS  Google Scholar 

  48. Yusta B, Boushey RP, Drucker DJ (2000) The glucagon-like peptide-2 receptor mediates direct inhibition of cellular apoptosis via a cAMP-dependent protein kinase-independent pathway. J Biol Chem 275(45):35345–35352

    Article  PubMed  CAS  Google Scholar 

  49. Marshman E, Booth C, Potten CS (2002) The intestinal epithelial stem cell. BioEssays 24:91–98

    Article  PubMed  Google Scholar 

  50. Kouris GJ, Liu Q, Rossi H, et al. (2001) The effect of glucagon-like peptide 2 on intstinal permeability and bacterial translocation in acute necrotizing pancreatitis. Am J Surg 181:571–575

    Article  PubMed  CAS  Google Scholar 

  51. Sigalet DL, Martin G, Meddings J (2004) 3-O Methylglucose absorption in vivo correlates with nutrient aborption and intestinal surface area in experimental short bowel syndrome. JPEN J Parenter Enteral Nutr 28:158–162

    Article  PubMed  CAS  Google Scholar 

  52. Scott RB, Kirk D, MacNaughton WK, Meddings JB (1998) GLP-2 augments the adaptive response to massive intestinal resection in rat. Am J Physiol 275(5, Pt 1):G911–G921

    PubMed  CAS  Google Scholar 

  53. Dahly EM, Gillinham MB, Guo Z, et al. (2003) Role of luminal nutrients and endogenous GLP-2 in intestinal adaptation to mid-small bowel resection. Am J Physiol Gastrointest Liver Physiol 284:G670–G682

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by funding from the Alberta Children’s Hospital Research Foundation. We thank NPS Pharmaceuticals for provision of GLP-2 and performance of assays and Lidia Demchyshyn for support. Thanks are also due to Gail Wright-Wilson for secretarial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. Sigalet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sigalet, D.L., Bawazir, O., Martin, G.R. et al. Glucagon-like Peptide-2 Induces a Specific Pattern of Adaptation in Remnant Jejunum. Dig Dis Sci 51, 1557–1566 (2006). https://doi.org/10.1007/s10620-006-9077-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-006-9077-5

Keywords

Navigation