Skip to main content

Advertisement

Log in

Understanding and Determining the Etiology of Autism

  • Review Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Worldwide, the rate of autism has been steadily rising. There are several environmental factors in concert with genetic susceptibilities that are contributing to this rise. Impaired methylation and mutations of mecp2 have been associated with autistic spectrum disorders, and related Rett syndrome. Genetic polymorphisms of cytochrome P450 enzymes have also been linked to autism, specifically CYP27B1 that is essential for proper vitamin D metabolism. Vitamin D is important for neuronal growth and neurodevelopment, and defects in metabolism or deficiency have been implicated in autistic individuals. Other factors that have been considered include: maternally derived antibodies, maternal infection, heavy metal exposure, folic acid supplementation, epigenetics, measles, mumps, rubella vaccination, and even electromagnetic radiation. In each case, the consequences, whether direct or indirect, negatively affect the nervous system, neurodevelopment, and environmental responsive genes. The etiology of autism is a topic of controversial debate, while researchers strive to achieve a common objective. The goal is to identify the cause(s) of autism to understand the complex interplay between environment and gene regulation. There is optimism that specific causes and risk factors will be identified. The results of future investigations will facilitate enhanced screening, prevention, and therapy for “at risk” and autistic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abrahams BS, Geschwind DH (2008) Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet 9:1–15

    Article  CAS  Google Scholar 

  • Abraham IM et al (2001) Action of glucocorticoids on survival of nerve cells: promoting neurodegeneration or neuroprotection? Neuroendocrinology 13:749–760

    Article  CAS  Google Scholar 

  • Adams JB, Romdalvik J (2007) Mercury, lead, and zinc in baby teeth of children with autism versus controls. J Toxicol Environ Health 70:1046–1051

    Article  CAS  Google Scholar 

  • Adams JB et al. (2003) Exposure to heavy metals, physical symptoms, and developmental milestones in children with autism. Fall 2003 conference proceedings of defeat autism now! Portland, OR

  • Almeras L et al (2007) Developmental vitamin D deficiency alters brain protein expression in the adult rat: implications for neuropsychiatric disorders. Proteomics 7(5):769–780

    Article  PubMed  CAS  Google Scholar 

  • American Medical Association (1989) Harmful effects of ultraviolet radiation. Council on scientific affairs. JAMA 262(3):380–384

    Article  Google Scholar 

  • Ashwood P et al (2006) The immune response in autism: a new frontier for autism research. J Leukoc Biol 80(1):1–15

    Article  PubMed  CAS  Google Scholar 

  • Bailey A et al (1995) Autism as a strongly genetic disorder: evidence from a British twin study. Psychol Med 25:63–77

    Article  PubMed  CAS  Google Scholar 

  • Ballatori N, Clarkson TW (1985) Biliary secretion of glutathione and of glutathione-metal complexes. Fundam Appl Toxicol 5:816–831

    Article  PubMed  CAS  Google Scholar 

  • Bernard S et al (2001) Autism: a novel form of mercury poisoning. Med Hypothesis 56:462–471

    Article  CAS  Google Scholar 

  • Bhasin TK, Scendel D (2007) Sociodemographic risk factors for autism in a US metropolitan area. J Autism Dev Disord 37(4):667–677

    Article  PubMed  Google Scholar 

  • Bird A (2008) The methyl-CpG-binding protein MeCP2 and neurological disease. Biochem Soc Trans 36:572–583

    Article  CAS  Google Scholar 

  • Bodnar LM et al (2007) High prevalence of vitamin D insufficiency in black and white pregnant women residing in the northern US and their neonates. J Nutr 137(2):447–452

    PubMed  CAS  Google Scholar 

  • Bohm HV, Stewart MG (2009) Brief report: on the concordance percentages for autistic spectrum disorder of twins. J Autism Dev Disord 39:806–808

    Article  PubMed  Google Scholar 

  • Boris MD et al (2004) Association of MTHFR gene variants with autism. J Am Phys Surg 9(4):106–108

    Google Scholar 

  • Braunschweig D et al (2008) Autism: maternally derived antibodies specific for fetal brain proteins. NeuroToxicology 22:6–231

    Google Scholar 

  • Burne TH, Feron F et al (2004) Combined prenatal and chronic postnatal vitamin D deficiency in rats impairs prepulse inhibition of acoustic startle. Physiol Behav 81(4):651–665

    Article  PubMed  CAS  Google Scholar 

  • Cannell JJ (2008) Autism and vitamin D. Med Hypotheses 70:750–759

    Article  PubMed  CAS  Google Scholar 

  • Centers for Disease Control and Prevention (2009) Autism information center. http://www.cdc.gov/ncbddd/autism/faq_prevalence.htm. 27 May 2009

  • Chang Q et al (2006) The disease progression of Mecp2 mutant mice is affected by the level of BDNF expression. Neuron 49:341–348

    Article  PubMed  CAS  Google Scholar 

  • Chen WG et al (2003) Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science 302(5646):885–889

    Article  PubMed  CAS  Google Scholar 

  • Comi AM et al (1999) Familial clustering of autoimmune disorders and evaluation of medical risk factors in autism. J Child Neurol 14(6):388–394

    Article  PubMed  CAS  Google Scholar 

  • Coy JF et al (1999) A complex pattern of evolutionary conservation and alternative polyadenylation within the long 3’-untranslated region of the methyl-CpG-binding protein 2 gene suggests a regulatory role in gene expression. Hum Mol Genet 8:1253–1262

    Article  PubMed  CAS  Google Scholar 

  • Croen LA et al (2005) Maternal autoimmune diseases, asthma, and allergies, and childhood autism spectrum disorders. Arch Pediatr Adolesc Med 159:151–157

    Article  PubMed  Google Scholar 

  • Cui X et al (2007) Maternal vitamin D deficiency alters neurogenesis in the developing rat brain. Int J Dev Neurosci 25:227–232

    Article  PubMed  CAS  Google Scholar 

  • Deth R et al (2008) How environmental and genetic factors combine to cause autism: a redox/methylation hypothesis. NeuroToxicology 29:190–201

    Article  PubMed  CAS  Google Scholar 

  • Egger G, Liang G, Aparicio A, Jones PA (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429:457–463

    Article  PubMed  CAS  Google Scholar 

  • Epstein S, Schneider AE (2005) Drug and hormone effects on vitamin D metabolism. In: Feldman D, Pike JW, Glorieux FH (eds) Vitamin D. Elsevier, San Diego

    Google Scholar 

  • Feron F et al (2005) Developmental vitamin D3 deficiency alters the adult rat brain. Brain Res Bull 65(2):141–148

    Article  PubMed  CAS  Google Scholar 

  • Filipek PA, Accardo PJ, Ashwal S et al (2000) Practice parameter: screening and diagnosis of autism: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Child Neurology Society. Neurology 55:468–479

    PubMed  CAS  Google Scholar 

  • Fombonne E (1999) The epidemiology of autism: a review. Psychol Med 29:769–786

    Article  PubMed  CAS  Google Scholar 

  • Fukushige S, Kondo E, Horii A (2008) Methyl-CpG targeted transcriptional activation allows re-expression of tumor suppressor genes in human cancer cells. Biochem Biophys Res Commun 377(2):600–605

    Article  PubMed  CAS  Google Scholar 

  • Garcion E et al (2002) New clues about vitamin D functions in the nervous system. Trends Endocrinol Metab 13(3):100–105

    Article  PubMed  CAS  Google Scholar 

  • Gillberg C (1998) Chromosomal disorders and autism. J Autism Dev Disord 28:415–425

    Article  PubMed  CAS  Google Scholar 

  • Gillberg C, Coleman M (2000) The biology of autistic syndromes, 3rd edn. Mac Keith, London (distributed by Cambridge University Press)

    Google Scholar 

  • Goetzl L et al (2002) Elevated maternal and fetal serum interleukin-6 levels are associated with epidural fever. Am J Obstet Gynecol 187(4):834–838

    Article  PubMed  Google Scholar 

  • Hardell L, Sage C (2008) Biological effects from electromagnetic field exposure and public exposure standards. Biomed Pharmacother 62:104–109

    Article  PubMed  CAS  Google Scholar 

  • Herbert MR et al (2006) Autism and environmental genomics. NeuroToxicology 27:671–684

    Article  PubMed  CAS  Google Scholar 

  • Hertz-Piciotto I et al (2006) The CHARGE study: an epidemiological investigation of genetic and environmental factors contributing to autism. Environ Health Perspect 114:1119–1125

    Article  Google Scholar 

  • Holick MF (1987) Photosynthesis of vitamin D in the skin: effect of environmental and lifestyle variables. Fed Proc 46:1876–1882

    PubMed  CAS  Google Scholar 

  • Holmes LB (1988) Does taking vitamins at the time of conception prevent neural tube defects? JAMA 260(21):3181

    Article  PubMed  CAS  Google Scholar 

  • James SJ et al (2004) Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am J Clin Nutr 80:1611–1617

    PubMed  CAS  Google Scholar 

  • Kalueff AV et al (2006) The vitamin D neuroendocrine system as a target for novel neurotropic drugs. CNS Neurol Disord Drug Targets 5(3):363–371

    PubMed  CAS  Google Scholar 

  • Kelleher RJ III, Bear MF (2008) The autistic neuron: troubled translation? Cell 135:401–406

    Article  CAS  Google Scholar 

  • Kern JK, Jones AM (2006) Evidence of toxicity, oxidative stress, and neuronal insult in autism. J Toxicol Environ Health Crit Rev 9(6):485–499

    Article  CAS  Google Scholar 

  • Li H, Yamagata T, Mori M et al (2005) Mutation analysis of Methyl-CpG binding protein family genes in autistic patients. Brain Dev 27:321–325

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Nyholt DR, Magnussen P et al (2001) A genome-wide screen for autism susceptibility loci. Am J Hum Genet 69:327–340

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Li Y, Tollefsbol TO (2008) Gene-environment interactions and epigenetic basis of human disease. Curr Issues Mol Biol 10(1–2):25–36

    PubMed  CAS  Google Scholar 

  • Loat CS et al. (2008) Methyl-CpG-binding protein 2 polymorphisms and vulnerability to autism. Genes Brain Behav 7(7):754–760

    Article  PubMed  CAS  Google Scholar 

  • Mahaffey KR et al (2004) Blood organic mercury and dietary mercury intake: National Health and Nutrition Examination Survey. Environ Health Perspect 112:562–570

    Article  PubMed  CAS  Google Scholar 

  • Mariea TJ, Carlo GL (2007) Wireless radiation in the etiology and treatment of autism: clinical observations and mechanisms. J Aust Coll Nutr Env Med 26(2):3–7

    Google Scholar 

  • Martinowich K et al (2003) DNA methylation related chromatin remodeling in activity-dependent BDNF gene regulation. Science 302:890–893

    Article  PubMed  CAS  Google Scholar 

  • Marz P et al (1999) Role of interleukin 6 and soluble IL-6 receptor in region specific induction of astrocytic differentiation and neurotrophin expression. Glia 26:191–200

    Article  PubMed  CAS  Google Scholar 

  • McGrath J et al (2001) Vitamin D: the neglected neurosteriod? Trends Neurosci 24(10):570–572

    Article  PubMed  CAS  Google Scholar 

  • Miller E (2003) Measles-mumps-rubella vaccine and the development of autism. Semin Pediatr Infect Dis 14(3):199–206

    Article  PubMed  Google Scholar 

  • Milunsky A, Jick H, Jick SS et al (1989) Multivitamin/folic acid supplementation in early pregnancy reduces the prevalence of neural tube defects. JAMA 262(20):2847–2852

    Article  PubMed  CAS  Google Scholar 

  • Moore V, Goodson S (2003) How well does early diagnosis of Autism stand the test of time? Follow-up study of children assessed for autism at age 2 and development of an early diagnostic service. Autism 7:47–63

    PubMed  Google Scholar 

  • Moore ME et al (2005) Evidence that vitamin D3 reverses age-related inflammatory changes in the rat hippocampus. Biochem Soc Trans 33(4):573–577

    Article  PubMed  CAS  Google Scholar 

  • Mulinare J, Cordero JF, Erickson JD, Berry RJ (1988) Periconceptional use of multivitamins and the occurrence of neural tube defects. JAMA 260(21):3141–3145

    Article  PubMed  CAS  Google Scholar 

  • Nagarajan R, Hogart A, Gwye Y, Martin M, LaSalle J (2006) Reduced MeCP2 expression in frequent in Autism frontal cortex and correlates with aberrant MECP2 promoter methylation. Epigenetics 1:172–182

    Google Scholar 

  • Nan X et al. (1998) Gene silencing by methyl-CpG-binding proteins. Novartis Foundation symposium, vol 214, pp. 6–16 (discussion 16–21, 46–50)

  • National Center for Biotechnology Information (2008) MeCP2 (human). www.pubmed.gov

  • Nuber UA et al (2005) Up-regulation of glucocorticoid-regulated genes in a mouse model of Rett syndrome. Hum Mol Genet 14:2247–2256

    Article  PubMed  CAS  Google Scholar 

  • Otto M, Von Mühlendahl KE (2007) Electromagnetic fields (EMF): do they play a role in children’s environmental health (CEH)? Int J Hyg Environ Health 210:635–644

    Article  PubMed  Google Scholar 

  • Rassoulzadegan M et al (2007) Epigenetic heredity in mice: involvement of RNA and miRNA. J Soc Biol 201(4):397–399

    Article  PubMed  CAS  Google Scholar 

  • Rice C et al (2007) Prevalence of autism spectrum disorders-autism and developmental disabilities monitoring network. CDC Survey Rep 56:12–28

    Google Scholar 

  • Rogers EJ (2008) Has enhanced folate status during pregnancy altered natural selection and possibly autism prevalence? A closer look at a possible link. Med Hypothesis 71:406–410

    Article  CAS  Google Scholar 

  • Rowland IR, Davies M, Evans J (1980) Tissue content of mercury in rats given methylmercury chloride orally: influence of intestinal flora. Arch Environ Health 35:155–160

    PubMed  CAS  Google Scholar 

  • Samaco RC et al (2004) Multiple pathways regulate MeCP2 expression in normal brain development and exhibit defects in autism-spectrum disorders. Hum Mol Genet 13:629–639

    Article  PubMed  CAS  Google Scholar 

  • Samaco RC et al (2008) A partial loss of function allele of methyl-CpG-binding protein 2 predicts a human neurodevelopmental syndrome. Hum Mol Genet 17(12):1718–1727

    Article  PubMed  CAS  Google Scholar 

  • Scriver CR et al (2000) The metabolic and molecular basis of inherited disease. McGraw-Hill, New York

    Google Scholar 

  • Shao Y, Wolpert CM, Raiford KL et al (2002) Genomic screen and follow-up analysis for autistic disorder. Am J Med Genet 114:99–105

    Article  PubMed  Google Scholar 

  • Silva SC et al (2004) Autoantibody repertoires to brain tissue in autism nuclear families. J Neuroimmunol 152:176–182

    Article  PubMed  CAS  Google Scholar 

  • Singer HS et al (2008) Antibodies against fetal brain in sera of mothers with autistic children. J Neuroimmunol 16:5–172

    Google Scholar 

  • Smalley SL et al (1998) A decade of research. Arch Gen Psychiatry 45:953–961

    Google Scholar 

  • Starmer J, Magnuson T (2009) A new model for random X-chromosome inactivation. Development 136(1):1–10

    Article  PubMed  CAS  Google Scholar 

  • Steffenburg S et al (1989) A twin study of autism in Denmark, Finland, Iceland, Norway and Sweden. J Child Psychol Psychiatry 30:405–416

    Article  PubMed  CAS  Google Scholar 

  • Stuck B et al (2002) Concomitant administration of varicella vaccine with combined measles, mumps, and rubella vaccine in healthy children aged 12 to 24 months of age. Asian Pac J Allergy Immunol 20(2):113–120

    PubMed  CAS  Google Scholar 

  • Szyf M (2009) Epigenetics, DNA methylation, and chromatin modifying drugs. Annu Rev Pharmacol Toxicol 49:243–263

    Article  PubMed  CAS  Google Scholar 

  • Thornton I (2006) Out of time: a possible link between mirror neurons, autism and electromagnetic radiation. Med Hypotheses 67(2):378–382

    Article  PubMed  Google Scholar 

  • Torres AR (2003) Is fever suppression involved in the etiology of autism and neurodevelopmental disorders? BMC Pediatr 3:9

    Article  PubMed  Google Scholar 

  • Urakubo A et al (2001) Prenatal exposure to maternal infection alters cytokine expression in the placenta, amniotic fluid, and fetal brain. Schizophr Res 47:27–36

    Article  PubMed  CAS  Google Scholar 

  • Wakefield AJ, Murch SH, Anthony A et al (1998) Ileal-lymphoid-nodular hyperplasia, non-specific colitis, and pervasive developmental disorder in children. Lancet 351:637–641

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Wong MH (2006) Environmental mercury contamination in China: sources and impacts. Environ Int 33:108–121

    Article  PubMed  Google Scholar 

  • Zhao X, Pak C, Smrt R, Jin P (2007) Epigenetics and neural developmental disorders. Epigenetics 2(2):126–134

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The author would like to acknowledge Egidio Currenti, Research Scientist at the New York State Department of Health/Wadsworth Center and David O. Carpenter, MD, Director of the Institute of Health and Environment at the State University of New York at Albany for their encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore A. Currenti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Currenti, S.A. Understanding and Determining the Etiology of Autism. Cell Mol Neurobiol 30, 161–171 (2010). https://doi.org/10.1007/s10571-009-9453-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-009-9453-8

Keywords

Navigation