Skip to main content
Log in

The prognostic value of standardized reference values for speckle-tracking global longitudinal strain in hypertrophic cardiomyopathy

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Speckle-tracking left ventricular global longitudinal strain (GLS) assessment may provide substantial prognostic information for hypertrophic cardiomyopathy (HCM) patients. Reference values for GLS have been recently published. We aimed to evaluate the prognostic value of standardized reference values for GLS in HCM patients. An analysis of HCM clinic patients who underwent GLS was performed. GLS was defined as normal (more negative or equal to −16 %) and abnormal (less negative than −16 %) based on recently published reference values. Patients were followed for a composite of events including heart failure hospitalization, sustained ventricular arrhythmia, and all-cause death. The power of GLS to predict outcomes was assessed relative to traditional clinical and echocardiographic variables present in HCM. 79 HCM patients were followed for a median of 22 months (interquartile range 9–30 months) after imaging. During follow-up, 15 patients (19 %) met the primary outcome. Abnormal GLS was the only echocardiographic variable independently predictive of the primary outcome [multivariate Hazard ratio 5.05 (95 % confidence interval 1.09–23.4, p = 0.038)]. When combined with traditional clinical variables, abnormal GLS remained independently predictive of the primary outcome [multivariate Hazard ratio 5.31 (95 % confidence interval 1.18–24, p = 0.030)]. In a model including the strongest clinical and echocardiographic predictors of the primary outcome, abnormal GLS demonstrated significant incremental benefit for risk stratification [net reclassification improvement 0.75 (95 % confidence interval 0.21–1.23, p < 0.0001)]. Abnormal GLS is an independent predictor of adverse outcomes in HCM patients. Standardized use of GLS may provide significant incremental value over traditional variables for risk stratification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CMR:

Cardiac magnetic resonance

GLS:

Global longitudinal strain

HCM:

Hypertrophic cardiomyopathy

LAVI:

Left atrial volume index

LV:

Left ventricle

NSVT:

Non-sustained ventricular tachycardia

NYHA:

New York Heart Association

SRT:

Septal reduction therapy

TTE:

Transthoracic echocardiography

References

  1. Gersh BJ, Maron BJ, Bonow RO, Dearani JA, Fifer MA, Link MS, Naidu SS, Nishimura RA, Ommen SR, Rakowski H, Seidman CE, Towbin JA, Udelson JE, Yancy CW (2011) 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 58(25):2703–2738. doi:10.1016/j.jacc.2011.10.825

    Article  PubMed  Google Scholar 

  2. Cecchi F, Olivotto I, Montereggi A, Santoro G, Dolara A, Maron BJ (1995) Hypertrophic cardiomyopathy in Tuscany: clinical course and outcome in an unselected regional population. J Am Coll Cardiol 26(6):1529–1536. doi:10.1016/0735-1097(95)00353-3

    Article  CAS  PubMed  Google Scholar 

  3. Decker JA, Rossano JW, Smith EO, Cannon B, Clunie SK, Gates C, Jefferies JL, Kim JJ, Price JF, Dreyer WJ, Towbin JA, Denfield SW (2009) Risk factors and mode of death in isolated hypertrophic cardiomyopathy in children. J Am Coll Cardiol 54(3):250–254. doi:10.1016/j.jacc.2009.03.051

    Article  PubMed  Google Scholar 

  4. Kofflard MJ, Ten Cate FJ, van der Lee C, van Domburg RT (2003) Hypertrophic cardiomyopathy in a large community-based population: clinical outcome and identification of risk factors for sudden cardiac death and clinical deterioration. J Am Coll Cardiol 41(6):987–993

    Article  PubMed  Google Scholar 

  5. Kyriakidis M, Triposkiadis F, Anastasakis A, Theopistou A, Tocta R, Barbetseas J, Gialafos J (1998) Hypertrophic cardiomyopathy in Greece: clinical course and outcome. Chest 114(4):1091–1096

    Article  CAS  PubMed  Google Scholar 

  6. Li M, Wang QB, Cheng K (2007) Long term follow-up results of 199 patients with hypertrophic cardiomyopathy. Zhonghua xin xue guan bing za zhi 35(11):988–991

    CAS  PubMed  Google Scholar 

  7. Maron BJ, Casey SA, Poliac LC, Gohman TE, Almquist AK, Aeppli DM (1999) Clinical course of hypertrophic cardiomyopathy in a regional United States cohort. J Am Med Assoc 281(7):650–655

    Article  CAS  Google Scholar 

  8. O’Mahony C, Tome-Esteban M, Lambiase PD, Pantazis A, Dickie S, McKenna WJ, Elliott PM (2013) A validation study of the 2003 American College of Cardiology/European Society of Cardiology and 2011 American College of Cardiology Foundation/American Heart Association risk stratification and treatment algorithms for sudden cardiac death in patients with hypertrophic cardiomyopathy. Heart (Br Card Soc) 99(8):534–541. doi:10.1136/heartjnl-2012-303271

    Article  Google Scholar 

  9. Mor-Avi V, Lang RM, Badano LP, Belohlavek M, Cardim NM, Derumeaux G, Galderisi M, Marwick T, Nagueh SF, Sengupta PP, Sicari R, Smiseth OA, Smulevitz B, Takeuchi M, Thomas JD, Vannan M, Voigt JU, Zamorano JL (2011) Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr 24(3):277–313. doi:10.1016/j.echo.2011.01.015

    Article  Google Scholar 

  10. Funabashi N, Takaoka H, Horie S, Ozawa K, Takahashi M, Yajima R, Saito M, Fujiwara K, Tani A, Kamata T, Kanaeda A, Uehara M, Kataoka A, Kobayashi Y (2013) Risk stratification using myocardial peak longitudinal-strain on speckle-tracking transthoracic-echocardiogram to predict major adverse cardiac events in non ischemic hypertrophic-cardiomyopathy subjects confirmed by MDCT. Int J Cardiol 168(4):4586–4589. doi:10.1016/j.ijcard.2013.06.056

    Article  PubMed  Google Scholar 

  11. Saito M, Okayama H, Yoshii T, Higashi H, Morioka H, Hiasa G, Sumimoto T, Inaba S, Nishimura K, Inoue K, Ogimoto A, Shigematsu Y, Hamada M, Higaki J (2012) Clinical significance of global two-dimensional strain as a surrogate parameter of myocardial fibrosis and cardiac events in patients with hypertrophic cardiomyopathy. Eur Heart J Cardiovasc Imaging 13(7):617–623. doi:10.1093/ejechocard/jer318

    Article  PubMed  Google Scholar 

  12. Yingchoncharoen T, Agarwal S, Popovic ZB, Marwick TH (2013) Normal ranges of left ventricular strain: a meta-analysis. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr 26(2):185–191. doi:10.1016/j.echo.2012.10.008

    Article  Google Scholar 

  13. Pencina MJ, D’Agostino RB Sr, D’Agostino RB Jr, Vasan RS (2008) Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med 27(2):157–172; discussion 207–112. doi:10.1002/sim.2929

  14. Kalogeropoulos AP, Georgiopoulou VV, Gheorghiade M, Butler J (2012) Echocardiographic evaluation of left ventricular structure and function: new modalities and potential applications in clinical trials. J Cardiac Fail 18(2):159–172. doi:10.1016/j.cardfail.2011.10.019

    Article  Google Scholar 

  15. Oxborough D, George K, Birch KM (2012) Intraobserver reliability of two-dimensional ultrasound derived strain imaging in the assessment of the left ventricle, right ventricle, and left atrium of healthy human hearts. Echocardiography 29(7):793–802. doi:10.1111/j.1540-8175.2012.01698.x

    Article  PubMed  Google Scholar 

  16. Adabag AS, Casey SA, Kuskowski MA, Zenovich AG, Maron BJ (2005) Spectrum and prognostic significance of arrhythmias on ambulatory Holter electrocardiogram in hypertrophic cardiomyopathy. J Am Coll Cardiol 45(5):697–704. doi:10.1016/j.jacc.2004.11.043

    Article  PubMed  Google Scholar 

  17. Debonnaire P, Thijssen J, Leong DP, Joyce E, Katsanos S, Hoogslag GE, Schalij MJ, Atsma DE, Bax JJ, Delgado V, Marsan NA (2014) Global longitudinal strain and left atrial volume index improve prediction of appropriate implantable cardioverter defibrillator therapy in hypertrophic cardiomyopathy patients. Int J Cardiovasc Imaging 30(3):549–558. doi:10.1007/s10554-014-0378-z

    Article  PubMed  Google Scholar 

  18. Paraskevaidis IA, Farmakis D, Papadopoulos C, Ikonomidis I, Parissis J, Rigopoulos A, Iliodromitis EK, Kremastinos DT (2009) Two-dimensional strain analysis in patients with hypertrophic cardiomyopathy and normal systolic function: a 12-month follow-up study. Am Heart J 158(3):444–450. doi:10.1016/j.ahj.2009.06.013

    Article  PubMed  Google Scholar 

  19. Chang SA, Lee SC, Choe YH, Hahn HJ, Jang SY, Park SJ, Choi JO, Park SW, Oh JK (2012) Effects of hypertrophy and fibrosis on regional and global functional heterogeneity in hypertrophic cardiomyopathy. Int J Cardiovasc Imaging 28(Suppl 2):133–140. doi:10.1007/s10554-012-0141-2

    Article  PubMed  Google Scholar 

  20. Popovic ZB, Kwon DH, Mishra M, Buakhamsri A, Greenberg NL, Thamilarasan M, Flamm SD, Thomas JD, Lever HM, Desai MY (2008) Association between regional ventricular function and myocardial fibrosis in hypertrophic cardiomyopathy assessed by speckle tracking echocardiography and delayed hyperenhancement magnetic resonance imaging. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr 21(12):1299–1305. doi:10.1016/j.echo.2008.09.011

    Article  Google Scholar 

  21. Prinz C, van Buuren F, Faber L, Bitter T, Bogunovic N, Burchert W, Horstkotte D (2012) Myocardial fibrosis is associated with biventricular dysfunction in patients with hypertrophic cardiomyopathy. Echocardiography 29(4):438–444. doi:10.1111/j.1540-8175.2011.01588.x

    Article  PubMed  Google Scholar 

  22. Urbano-Moral JA, Rowin EJ, Maron MS, Crean A, Pandian NG (2014) Investigation of global and regional myocardial mechanics with 3-dimensional speckle tracking echocardiography and relations to hypertrophy and fibrosis in hypertrophic cardiomyopathy. Circ Cardiovasc Imaging 7(1):11–19. doi:10.1161/circimaging.113.000842

    Article  PubMed  Google Scholar 

  23. Funabashi N, Kataoka A, Horie S, Ozawa K, Takaoka H, Takahashi M, Yajima R, Saito M, Umazume T, Fujiwara K, Kamata T, Uehara M, Kobayashi Y (2013) Distinguishing 320 slice CT-detected focal fibrotic lesions and non-fibrotic lesions in hypertrophic cardiomyopathy by assessment of regional myocardial strain using two dimensional speckle tracking echocardiography. Int J Cardiol 169(6):e109–e113. doi:10.1016/j.ijcard.2013.10.029

    Article  PubMed  Google Scholar 

  24. Funabashi N, Takaoka H, Horie S, Ozawa K, Daimon M, Takahashi M, Yajima R, Saito M, Fujiwara K, Tani A, Kamata T, Uehara M, Kataoka A, Kobayashi Y (2013) Regional peak longitudinal-strain by 2D speckle-tracking TTE provides useful information to distinguish fibrotic from non-fibrotic lesions in LV myocardium on cardiac MR in hypertrophic cardiomyopathy. Int J Cardiol 168(4):4520–4523. doi:10.1016/j.ijcard.2013.06.105

    Article  PubMed  Google Scholar 

  25. Yajima R, Kataoka A, Takahashi A, Uehara M, Saito M, Yamaguchi C, Lee K, Komuro I, Funabashi N (2012) Distinguishing focal fibrotic lesions and non-fibrotic lesions in hypertrophic cardiomyopathy by assessment of regional myocardial strain using two-dimensional speckle tracking echocardiography: comparison with multislice CT. Int J Cardiol 158(3):423–432. doi:10.1016/j.ijcard.2011.01.096

    Article  PubMed  Google Scholar 

  26. Almaas VM, Haugaa KH, Strom EH, Scott H, Dahl CP, Leren TP, Geiran OR, Endresen K, Edvardsen T, Aakhus S, Amlie JP (2013) Increased amount of interstitial fibrosis predicts ventricular arrhythmias, and is associated with reduced myocardial septal function in patients with obstructive hypertrophic cardiomyopathy. Europace 15(9):1319–1327. doi:10.1093/europace/eut028

    Article  PubMed  Google Scholar 

  27. Almaas VM, Haugaa KH, Strom EH, Scott H, Smith HJ, Dahl CP, Geiran OR, Endresen K, Aakhus S, Amlie JP, Edvardsen T (2013) Noninvasive assessment of myocardial fibrosis in patients with obstructive hypertrophic cardiomyopathy. Heart (Br Card Soc). doi:10.1136/heartjnl-2013-304923

    Google Scholar 

  28. Sun JP, Stewart WJ, Yang XS, Donnell RO, Leon AR, Felner JM, Thomas JD, Merlino JD (2009) Differentiation of hypertrophic cardiomyopathy and cardiac amyloidosis from other causes of ventricular wall thickening by two-dimensional strain imaging echocardiography. Am J Cardiol 103(3):411–415. doi:10.1016/j.amjcard.2008.09.102

    Article  PubMed  Google Scholar 

  29. Butz T, van Buuren F, Mellwig KP, Langer C, Plehn G, Meissner A, Trappe HJ, Horstkotte D, Faber L (2011) Two-dimensional strain analysis of the global and regional myocardial function for the differentiation of pathologic and physiologic left ventricular hypertrophy: a study in athletes and in patients with hypertrophic cardiomyopathy. Int J Cardiovasc Imaging 27(1):91–100. doi:10.1007/s10554-010-9665-5

    Article  CAS  PubMed  Google Scholar 

  30. Yang H, Carasso S, Woo A, Jamorski M, Nikonova A, Wigle ED, Rakowski H (2010) Hypertrophy pattern and regional myocardial mechanics are related in septal and apical hypertrophic cardiomyopathy. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr 23(10):1081–1089. doi:10.1016/j.echo.2010.06.006

    Article  Google Scholar 

  31. Yiu KH, Atsma DE, Delgado V, Ng AC, Witkowski TG, Ewe SH, Auger D, Holman ER, van Mil AM, Breuning MH, Tse HF, Bax JJ, Schalij MJ, Marsan NA (2012) Myocardial structural alteration and systolic dysfunction in preclinical hypertrophic cardiomyopathy mutation carriers. PLoS ONE 7(5):e36115. doi:10.1371/journal.pone.0036115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Moravsky G, Bruchal-Garbicz B, Jamorski M, Ralph-Edwards A, Gruner C, Williams L, Woo A, Yang H, Laczay B, Rakowski H, Carasso S (2013) Myocardial mechanical remodeling after septal myectomy for severe obstructive hypertrophic cardiomyopathy. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr 26(8):893–900. doi:10.1016/j.echo.2013.05.012

    Article  Google Scholar 

  33. Sommer A, Poulsen SH, Mogensen J, Thuesen L, Egeblad H (2010) Left ventricular longitudinal systolic function after alcohol septal ablation for hypertrophic obstructive cardiomyopathy: a long-term follow-up study focused on speckle tracking echocardiography. Eur J Echocardiogr J Work Group Echocardiogr Eur Soc Cardiol 11(10):883–888. doi:10.1093/ejechocard/jeq087

    Article  Google Scholar 

  34. Feigenbaum H, Mastouri R, Sawada S (2012) A practical approach to using strain echocardiography to evaluate the left ventricle. Circ J Off J Jpn Circ Soc 76(7):1550–1555

    Google Scholar 

Download references

Conflict of interest

There are no conflicts of interest on the part of any authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory R. Hartlage.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartlage, G.R., Kim, J.H., Strickland, P.T. et al. The prognostic value of standardized reference values for speckle-tracking global longitudinal strain in hypertrophic cardiomyopathy. Int J Cardiovasc Imaging 31, 557–565 (2015). https://doi.org/10.1007/s10554-015-0590-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-015-0590-5

Keywords

Navigation