Skip to main content
Log in

Tc-99m sestamibi single photon emission computed tomography for guiding percutaneous coronary intervention in patients with multivessel disease: a comparison with quantitative coronary angiography and fractional flow reserve

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

To evaluate the accuracy of myocardial perfusion SPECT (MPI) in the detection and allocation of vessel specific perfusion defects (PD) using standard distribution territories in a routine clinical procedure of patients with multivessel disease (MVD). Combined quantitative coronary angiography and fractional flow reserve (QCA/FFR) measurements were used as invasive reference standard. 216 vessels in 72 MVD patients (67 ± 10 years, 28 female) were investigated using MPI and QCA. FFR of 93 vessels with intermediate stenoses was determined. MPI detected significant stenoses according to QCA/FFR findings with a sensitivity of 85%. However, vessel-based evaluation using standard myocardial distribution territories delivered a sensitivity of only 62% (28 MPI+ out of 45 (QCA/FFR)+ findings), with specificity, PPV and NPV of 90, 62 and 90%. 7/17 false positive and 7/17 false negative findings (41%) could be attributed to incorrect allocation of reversible PD to their respective coronary arteries. 6/17 (35%) perfusion territories were classified as false negative when additional fixed PD were present. MPI had reasonable sensitivity for the detection of significant coronary artery disease in patients with multivessel disease. However, sensitivity decreased markedly, when the significance of each individual stenosis was evaluated using standard myocardial supplying territories. In this setting, 41% of false negative and false positive MPI findings resulted from incorrect allocation of reversible perfusion defects to their determining supplying vessel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. (1999) Imaging guidelines for nuclear cardiology procedures, part 2. American Society of Nuclear Cardiology. J Nucl Cardiol 6(2):G47–84

  2. Allman KC, Berry J, Sucharski LA et al (1992) Determination of extent and location of coronary artery disease in patients without prior myocardial infarction by thallium-201 tomography with pharmacologic stress. J Nucl Med 33(12):2067–2073

    PubMed  CAS  Google Scholar 

  3. Berger A, Botman KJ, MacCarthy PA et al (2005) Long-term clinical outcome after fractional flow reserve-guided percutaneous coronary intervention in patients with multivessel disease. J Am Coll Cardiol 46(3):438–442

    Article  PubMed  Google Scholar 

  4. Brindis RG, Douglas PS, Hendel RC et al (2005) ACCF/ASNC appropriateness criteria for single-photon emission computed tomography myocardial perfusion imaging (SPECT MPI): a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group and the American Society of Nuclear Cardiology endorsed by the American Heart Association. J Am Coll Cardiol 46(8):1587–1605

    Article  PubMed  Google Scholar 

  5. Caymaz O, Fak AS, Tezcan H et al (2000) Correlation of myocardial fractional flow reserve with thallium-201 SPECT imaging in intermediate-severity coronary artery lesions. J Invasive Cardiol 12(7):345–350

    PubMed  CAS  Google Scholar 

  6. Cerqueira MD, Weissman NJ, Dilsizian V et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105(4):539–542

    Article  PubMed  Google Scholar 

  7. Chamuleau SA, Meuwissen M, Koch KT et al (2002) Usefulness of fractional flow reserve for risk stratification of patients with multivessel coronary artery disease and an intermediate stenosis. Am J Cardiol 89(4):377–380

    Article  PubMed  Google Scholar 

  8. Chamuleau SA, Meuwissen M, van Eck-Smit BL et al (2001) Fractional flow reserve, absolute and relative coronary blood flow velocity reserve in relation to the results of technetium-99m sestamibi single-photon emission computed tomography in patients with two-vessel coronary artery disease. J Am Coll Cardiol 37(5):1316–1322

    Article  PubMed  CAS  Google Scholar 

  9. Chamuleau SA, Tio RA, de Cock CC et al (2002) Prognostic value of coronary blood flow velocity and myocardial perfusion in intermediate coronary narrowings and multivessel disease. J Am Coll Cardiol 39(5):852–858

    Article  PubMed  Google Scholar 

  10. Christian TF, Miller TD, Bailey KR et al (1992) Noninvasive identification of severe coronary artery disease using exercise tomographic thallium-201 imaging. Am J Cardiol 70(1):14–20

    Article  PubMed  CAS  Google Scholar 

  11. De Bruyne B, Bartunek J, Sys SU et al (1995) Relation between myocardial fractional flow reserve calculated from coronary pressure measurements and exercise-induced myocardial ischemia. Circulation 92(1):39–46

    PubMed  Google Scholar 

  12. De Bruyne B, Pijls NH, Bartunek J et al (2001) Fractional flow reserve in patients with prior myocardial infarction. Circulation 104(2):157–162

    PubMed  Google Scholar 

  13. Faber TL, Santana CA, Garcia EV et al (2004) Three-dimensional fusion of coronary arteries with myocardial perfusion distributions: clinical validation. J Nucl Med 45(5):745–753

    PubMed  Google Scholar 

  14. Fischer JJ, Samady H, McPherson JA et al (2002) Comparison between visual assessment and quantitative angiography versus fractional flow reserve for native coronary narrowings of moderate severity. Am J Cardiol 90(3):210–215

    Article  PubMed  Google Scholar 

  15. Gibbons RJ, Abrams J, Chatterjee K et al (2003) ACC/AHA 2002 guideline update for the management of patients with chronic stable angina—summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on the Management of Patients With Chronic Stable Angina). Circulation 107(1):149–158

    Article  PubMed  Google Scholar 

  16. Gibbons RJ, Chatterjee K, Daley J et al (1999) ACC/AHA/ACP-ASIM guidelines for the management of patients with chronic stable angina: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Committee on management of patients with chronic stable angina). J Am Coll Cardiol 33(7):2092–2197

    Article  PubMed  CAS  Google Scholar 

  17. Hacker M, Jakobs T, Hack N et al (2007) Combined use of 64-slice computed tomography angiography and gated myocardial perfusion SPECT for the detection of functionally relevant coronary artery stenoses. First results in a clinical setting concerning patients with stable angina. Nuklearmedizin 46(1):29–35

    PubMed  CAS  Google Scholar 

  18. Hacker M, Rieber J, Schmid R et al (2005) Comparison of Tc-99m sestamibi SPECT with fractional flow reserve in patients with intermediate coronary artery stenoses. J Nucl Cardiol 12(6):645–654

    Article  PubMed  Google Scholar 

  19. Hacker M, Tausig A, Romuller B et al (2005) Dobutamine myocardial scintigraphy for the prediction of cardiac events after heart transplantation. Nucl Med Commun 26(7):607–612

    Article  PubMed  Google Scholar 

  20. Kalbfleisch H, Hort W (1977) Quantitative study on the size of coronary artery supplying areas postmortem. Am Heart J 94(2):183–188

    Article  PubMed  CAS  Google Scholar 

  21. Leesar MA, Abdul-Baki T, Akkus NI et al (2003) Use of fractional flow reserve versus stress perfusion scintigraphy after unstable angina. Effect on duration of hospitalization, cost, procedural characteristics, and clinical outcome. J Am Coll Cardiol 41(7):1115–1121

    Article  PubMed  Google Scholar 

  22. Lima RS, Watson DD, Goode AR et al (2003) Incremental value of combined perfusion and function over perfusion alone by gated SPECT myocardial perfusion imaging for detection of severe three-vessel coronary artery disease. J Am Coll Cardiol 42(1):64–70

    Article  PubMed  Google Scholar 

  23. Mahmarian JJ, Mahmarian AC, Marks GF et al (1995) Role of adenosine thallium-201 tomography for defining long-term risk in patients after acute myocardial infarction. J Am Coll Cardiol 25(6):1333–1340

    Article  PubMed  CAS  Google Scholar 

  24. Marques KM, Knaapen P, Boellaard R et al (2007) Hyperaemic microvascular resistance is not increased in viable myocardium after chronic myocardial infarction. Eur Heart J 28(19):2320–2325

    Article  PubMed  Google Scholar 

  25. Matsuo H, Watanabe S, Kadosaki T et al (2002) Validation of collateral fractional flow reserve by myocardial perfusion imaging. Circulation 105(9):1060–1065

    Article  PubMed  Google Scholar 

  26. Miller DD (2002) Coronary flow studies for risk stratification in multivessel disease. A physiologic bridge too far? J Am Coll Cardiol 39(5):859–863

    Article  PubMed  Google Scholar 

  27. Namdar M, Hany TF, Koepfli P et al (2005) Integrated PET/CT for the assessment of coronary artery disease: a feasibility study. J Nucl Med 46(6):930–935

    PubMed  Google Scholar 

  28. Pijls NH, De Bruyne B, Bech GJ et al (2000) Coronary pressure measurement to assess the hemodynamic significance of serial stenoses within one coronary artery: validation in humans. Circulation 102(19):2371–2377

    PubMed  CAS  Google Scholar 

  29. Pijls NH, De Bruyne B, Peels K et al (1996) Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med 334(26):1703–1708

    Article  PubMed  CAS  Google Scholar 

  30. Pijls NH, Van Gelder B, Van der Voort P et al (1995) Fractional flow reserve. A useful index to evaluate the influence of an epicardial coronary stenosis on myocardial blood flow. Circulation 92(11):3183–3193

    PubMed  CAS  Google Scholar 

  31. Pijls NH, van Schaardenburgh P, Manoharan G et al (2007) Percutaneous coronary intervention of functionally nonsignificant stenosis: 5-year follow-up of the DEFER study. J Am Coll Cardiol 49(21):2105–2111

    Article  PubMed  Google Scholar 

  32. Ragosta M, Bishop AH, Lipson LC et al (2007) Comparison between angiography and fractional flow reserve versus single-photon emission computed tomographic myocardial perfusion imaging for determining lesion significance in patients with multivessel coronary disease. Am J Cardiol 99(7):896–902

    Article  PubMed  Google Scholar 

  33. Rieber J, Huber A, Erhard I et al (2006) Cardiac magnetic resonance perfusion imaging for the functional assessment of coronary artery disease: a comparison with coronary angiography and fractional flow reserve. Eur Heart J 27(12):1465–1471

    Article  PubMed  Google Scholar 

  34. Sciagra R (2003) Nitrates and viability: a durable affair. J Nucl Med 44(5):752–755

    PubMed  Google Scholar 

  35. Shaw LJ, Peterson ED, Kesler K et al (1996) A metaanalysis of predischarge risk stratification after acute myocardial infarction with stress electrocardiographic, myocardial perfusion, and ventricular function imaging. Am J Cardiol 78(12):1327–1337

    Article  PubMed  CAS  Google Scholar 

  36. Smith SC Jr, Dove JT, Jacobs AK et al (2001) ACC/AHA guidelines for percutaneous coronary intervention (revision of the 1993 PTCA guidelines)-executive summary: a report of the American College of Cardiology/American Heart Association task force on practice guidelines (Committee to revise the 1993 guidelines for percutaneous transluminal coronary angioplasty) endorsed by the Society for Cardiac Angiography and Interventions. Circulation 103(24):3019–3041

    PubMed  Google Scholar 

  37. Tadamura E, Mamede M, Kubo S et al (2003) The effect of nitroglycerin on myocardial blood flow in various segments characterized by rest-redistribution thallium SPECT. J Nucl Med 44(5):745–751

    PubMed  CAS  Google Scholar 

  38. Tonino PA, De Bruyne B, Pijls NH et al (2009) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 360(3):213–224

    Article  PubMed  CAS  Google Scholar 

  39. Topol EJ, Nissen SE (1995) Our preoccupation with coronary luminology. The dissociation between clinical and angiographic findings in ischemic heart disease. Circulation 92(8):2333–2342

    PubMed  CAS  Google Scholar 

  40. Travin MI, Dessouki A, Cameron T et al (1995) Use of exercise technetium-99m sestamibi SPECT imaging to detect residual ischemia and for risk stratification after acute myocardial infarction. Am J Cardiol 75(10):665–669

    Article  PubMed  CAS  Google Scholar 

  41. Travin MI, Katz MS, Moulton AW et al (2000) Accuracy of dipyridamole SPECT imaging in identifying individual coronary stenoses and multivessel disease in women versus men. J Nucl Cardiol 7(3):213–220

    Article  PubMed  CAS  Google Scholar 

  42. Usui Y, Chikamori T, Yanagisawa H et al (2003) Reliability of pressure-derived myocardial fractional flow reserve in assessing coronary artery stenosis in patients with previous myocardial infarction. Am J Cardiol 92(6):699–702

    Article  PubMed  Google Scholar 

  43. Yanagisawa H, Chikamori T, Tanaka N et al (2002) Correlation between thallium-201 myocardial perfusion defects and the functional severity of coronary artery stenosis as assessed by pressure-derived myocardial fractional flow reserve. Circ J 66(12):1105–1109

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful for the support and superb technical assistance of the staff in the departments of Nuclear Medicine and Cardiology at the University of Munich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Hacker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Förster, S., Rieber, J., Übleis, C. et al. Tc-99m sestamibi single photon emission computed tomography for guiding percutaneous coronary intervention in patients with multivessel disease: a comparison with quantitative coronary angiography and fractional flow reserve. Int J Cardiovasc Imaging 26, 203–213 (2010). https://doi.org/10.1007/s10554-009-9510-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-009-9510-x

Keywords

Navigation