Skip to main content
Log in

Delayed enhancement cardiac magnetic resonance imaging reveals typical patterns of myocardial injury in patients with various forms of non-ischemic heart disease

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Background Late gadolinium-hyperenhancement (LHE) on cardiac Magnetic Resonance Imaging (CMR) has been linked to cardiovascular risk in ischemic and non-ischemic heart disease. We aimed to systematically categorize LHE-patterns in a variety of non-ischemic heart diseases (NIHD) and to explore their relationship with left ventricular (LV) function. Methods In a retrospective database search, 156 patients with NIHD who exhibited LHE on CMR were identified. All images were re-analyzed stepwise. LHE was correlated to LV functional parameters. Cardiac magnetic resonance (CMR) was conducted on 1.5 T scanners. Results Typically, LHE spared the subendocardium. Consistent LHE-patterns were observed in myocarditis, hypertrophic and dilated cardiomyopathy and systemic vasculitis. No conclusive LHE-patterns were observed in patients with aortic stenosis, arterial hypertension, lupus erythematosus, sarcoidosis, ventricular arrhythmia and in a mixed subgroup of rare NIHDs. There was no significant relationship between LHE and ejection fraction. There was no correlation between enddiastolic volume and LHE in either myocarditis (P = 0.13) or dilated cardiomyopathy (P = 0.62). LHE was unrelated to LV-mass in aortic stenosis (P = 0.13) and hypertrophic cardiomyopathy (P = 0.38). Conclusions Distinct LHE patterns exist in various NIHDs and their visualization may ultimately aid diagnosis. Unlike in ischemic heart disease, the structure-function relationship does not appear to be strong.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wagner A, Mahrholdt H, Holly TA et al (2003) Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet 361:374–379

    Article  PubMed  Google Scholar 

  2. Bello D, Fieno DS, Kim RJ et al (2005) Infarct morphology identifies patients with substrate for sustained ventricular tachycardia. J Am Coll Cardiol 45:1104–1108

    Article  PubMed  Google Scholar 

  3. Abdel-Aty H, Boye P, Zagrosek A et al (2005) Diagnostic performance of cardiovascular magnetic resonance in patients with suspected acute myocarditis: comparison of different approaches. J Am Coll Cardiol 45:1815–1822

    Article  PubMed  Google Scholar 

  4. Choudhury L, Mahrholdt H, Wagner A et al (2002) Myocardial scarring in asymptomatic or mildly symptomatic patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 40:2156–2164

    Article  PubMed  Google Scholar 

  5. McCrohon JA, Moon JC, Prasad SK et al (2003) Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance. Circulation 108:54–59

    Article  CAS  PubMed  Google Scholar 

  6. Mahrholdt H, Goedecke C, Wagner A et al (2004) Cardiovascular magnetic resonance assessment of human myocarditis: a comparison to histology and molecular pathology. Circulation 109:1250–1258

    Article  PubMed  Google Scholar 

  7. Assomull RG, Prasad SK, Lyne J et al (2006) Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol 48:1977–1985

    Article  PubMed  Google Scholar 

  8. Nazarian S, Bluemke DA, Lardo AC et al (2005) Magnetic resonance assessment of the substrate for inducible ventricular tachycardia in nonischemic cardiomyopathy. Circulation 112:2821–2825

    Article  PubMed  Google Scholar 

  9. Gottlieb I, Macedo R, Bluemke DA, Lima JA (2006) Magnetic resonance imaging in the evaluation of non-ischemic cardiomyopathies: current applications and future perspectives. Heart Fail Rev 11:313–323

    Article  PubMed  Google Scholar 

  10. Jackson E, Bellenger N, Seddon M et al (2007) Ischaemic and non-ischaemic cardiomyopathies-cardiac MRI appearances with delayed enhancement. Clin Radiol 62:395–403

    Article  CAS  PubMed  Google Scholar 

  11. Vogel-Claussen J, Rochitte CE, Wu KC et al (2006) Delayed enhancement MR imaging: utility in myocardial assessment. Radiographics 26:795–810

    Article  PubMed  Google Scholar 

  12. Mahrholdt H, Wagner A, Judd RM et al (2005) Delayed enhancement cardiovascular magnetic resonance assessment of non-ischaemic cardiomyopathies. Eur Heart J 26:1461–1474

    Article  PubMed  Google Scholar 

  13. Richardson P, McKenna W, Bristow M et al (1996) Report of the 1995 world health organization/international society and federation of cardiology task force on the definition and classification of cardiomyopathies. Circulation 93:841–842

    CAS  PubMed  Google Scholar 

  14. Cerqueira MD, Weissman NJ, Dilsizian V et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105:539–542

    Article  PubMed  Google Scholar 

  15. Carr DH, Brown J, Bydder GM et al (1984) Gadolinium-DTPA as a contrast agent in MRI: initial clinical experience in 20 patients. AJR Am J Roentgenol 143:215–224

    CAS  PubMed  Google Scholar 

  16. Kim RJ, Chen EL, Lima JA, Judd RM (1996) Myocardial Gd-DTPA kinetics determine MRI contrast enhancement and reflect the extent and severity of myocardial injury after acute reperfused infarction. Circulation 94:3318–3326

    CAS  PubMed  Google Scholar 

  17. Aso H, Takeda K, Ito T et al (1998) Assessment of myocardial fibrosis in cardiomyopathic hamsters with gadolinium-DTPA enhanced magnetic resonance imaging. Invest Radiol 33:22–32

    Article  CAS  PubMed  Google Scholar 

  18. Messroghli DR, Radjenovic A, Kozerke S et al (2004) Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med 52:141–146

    Article  PubMed  Google Scholar 

  19. Mahrholdt H, Wagner A, Deluigi CC et al (2006) Presentation, patterns of myocardial damage, and clinical course of viral myocarditis. Circulation 114:1581–1590

    Article  PubMed  Google Scholar 

  20. Lenghaus C, Studdert MJ (1984) Acute and chronic viral myocarditis. Acute diffuse nonsuppurative myocarditis and residual myocardial scarring following infection with canine parvovirus. Am J Pathol 115:316–319

    CAS  PubMed  Google Scholar 

  21. Bultmann BD, Klingel K, Sotlar K et al (2003) Fatal parvovirus B19-associated myocarditis clinically mimicking ischemic heart disease: an endothelial cell-mediated disease. Hum Pathol 34:92–95

    Article  PubMed  Google Scholar 

  22. Magnani JW, Danik HJ, Dec GW Jr, DiSalvo TG (2006) Survival in biopsy-proven myocarditis: a long-term retrospective analysis of the histopathologic, clinical, and hemodynamic predictors. Am Heart J 151:463–470

    Article  PubMed  Google Scholar 

  23. McCarthy RE III, Boehmer JP, Hruban RH et al (2000) Long-term outcome of fulminant myocarditis as compared with acute (nonfulminant) myocarditis. N Engl J Med 342:690–695

    Article  PubMed  Google Scholar 

  24. Cooper LT Jr, Berry GJ, Shabetai R (1997) Idiopathic giant-cell myocarditis-natural history and treatment. Multicenter Giant Cell Myocarditis Study Group Investigators. N Engl J Med 336:1860–1866

    Article  PubMed  Google Scholar 

  25. Knaapen P, van Dockum WG, Bondarenko O et al (2005) Delayed contrast enhancement and perfusable tissue index in hypertrophic cardiomyopathy: comparison between cardiac MRI and PET. J Nucl Med 46:923–929

    PubMed  Google Scholar 

  26. Moon JC, Mogensen J, Elliott PM et al (2005) Myocardial late gadolinium enhancement cardiovascular magnetic resonance in hypertrophic cardiomyopathy caused by mutations in troponin I. Heart 91:1036–1040

    Article  CAS  PubMed  Google Scholar 

  27. Debl K, Djavidani B, Buchner S et al (2006) Delayed hyperenhancement in magnetic resonance imaging of left ventricular hypertrophy caused by aortic stenosis and hypertrophic cardiomyopathy: visualisation of focal fibrosis. Heart 92:1447–1451

    Article  CAS  PubMed  Google Scholar 

  28. Blyth KG, Groenning BA, Martin TN et al (2005) Contrast enhanced-cardiovascular magnetic resonance imaging in patients with pulmonary hypertension. Eur Heart J 26:1993–1999

    Article  PubMed  Google Scholar 

  29. Kuribayashi T, Roberts WC (1992) Myocardial disarray at junction of ventricular septum and left and right ventricular free walls in hypertrophic cardiomyopathy. Am J Cardiol 70:1333–1340

    Article  CAS  PubMed  Google Scholar 

  30. Maehashi N, Yokota Y, Takarada A et al (1991) The role of myocarditis and myocardial fibrosis in dilated cardiomyopathy. Analysis of 28 necropsy cases. Jpn Heart J 32:1–15

    CAS  PubMed  Google Scholar 

  31. Roberts WC, Siegel RJ, McManus BM (1987) Idiopathic dilated cardiomyopathy: analysis of 152 necropsy patients. Am J Cardiol 60:1340–1355

    Article  CAS  PubMed  Google Scholar 

  32. Pauschinger M, Knopf D, Petschauer S et al (1999) Dilated cardiomyopathy is associated with significant changes in collagen type I/III ratio. Circulation 99:2750–2756

    CAS  PubMed  Google Scholar 

  33. Kawai S, Okada R (1990) Interstitial cell infiltrate and myocardial fibrosis in dilated cardiomyopathy: a special type of cardiomegaly corresponding to sequelae of myocarditis. Heart Vessels 5:230–236

    Article  CAS  PubMed  Google Scholar 

  34. Cothran LHE, Sandler H (1973) An analysis of left ventricular dimensional changes in conscious animals. Dewy Publication, Washington DC, pp 553–565

    Google Scholar 

  35. Petersen SE, Kardos A, Neubauer S (2005) Subendocardial and papillary muscle involvement in a patient with Churg–Strauss syndrome, detected by contrast enhanced cardiovascular magnetic resonance. Heart 91:e9

    Article  CAS  PubMed  Google Scholar 

  36. Mukherjee B, Chir B, Moon JC et al (2004) Endomyocardial fibrosis in Churg–Strauss syndrome. Clin Cardiol 27:21

    Article  PubMed  Google Scholar 

  37. Hein S, Arnon E, Kostin S et al (2003) Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation 107:984–991

    Article  PubMed  Google Scholar 

  38. Smedema JP, Snoep G, van Kroonenburgh MP et al (2005) The additional value of gadolinium-enhanced MRI to standard assessment for cardiac involvement in patients with pulmonary sarcoidosis. Chest 128:1629–1637

    Article  PubMed  Google Scholar 

  39. Knockaert DC (2007) Cardiac involvement in systemic inflammatory diseases. Eur Heart J 15:1797–1804

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank our study nurse Melanie Bochmann, as well as our technicians Kerstin Kretschel, Denise Kleindienst, Ursula Wagner, Evelyn Polzien and Franziska Neumann for their assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Bohl.

Additional information

Steffen Bohl and Ralf Wassmuth—contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bohl, S., Wassmuth, R., Abdel-Aty, H. et al. Delayed enhancement cardiac magnetic resonance imaging reveals typical patterns of myocardial injury in patients with various forms of non-ischemic heart disease. Int J Cardiovasc Imaging 24, 597–607 (2008). https://doi.org/10.1007/s10554-008-9300-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-008-9300-x

Keywords

Navigation