Skip to main content

Advertisement

Log in

A systematic review of elastography, electrical impedance scanning, and digital infrared thermography for breast cancer screening and diagnosis

  • Review
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

The objective of this study aimed to systematically identify and evaluate all the available evidence of safety, effectiveness and diagnostic accuracy for three emerging classes of technology promoted for breast cancer screening and diagnosis: Digital infrared thermal imaging (DITI), electrical impedance scanning (EIS) and elastography. A systematic search of seven biomedical databases (EMBASE, PubMed, Web of Science, CRD, CINAHL, Cochrane Library, Current Contents Connect) was conducted through March 2011, along with a manual search of reference lists from relevant studies. The principal outcome measures were safety, effectiveness, and diagnostic accuracy. Data were extracted using a standardised form, and validated for accuracy by the secondary authors. Study quality was appraised using the quality assessment of diagnostic accuracy studies tool, while heterogeneity was assessed using forest plots, Cooks’ distance and standardised residual scatter plots, and I 2 statistics. From 6,808 search results, 267 full-text articles were assessed, of which 60 satisfied the inclusion criteria. No effectiveness studies were identified. Only one EIS screening accuracy study was identified, while all other studies involved symptomatic populations. Significant heterogeneity was present among all device classes, limiting the potential for meta-analyses. Sensitivity and specificity varied greatly for DITI (Sens 0.25–0.97, Spec 0.12–0.85), EIS (Sens 0.26–0.98, Spec 0.08–0.81) and ultrasound elastography (Sens 0.35–1.00, Spec 0.21–0.99). It is concluded that there is currently insufficient evidence to recommend the use of these technologies for breast cancer screening. Moreover, the high level of heterogeneity among studies of symptomatic women limits inferences that may be drawn regarding their use as diagnostic tools. Future research employing standardised imaging, research and reporting methods is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kuhl CK (2007) Current status of breast MR imaging: part 2. Clinical applications. Radiology 244:672–691

    Article  PubMed  Google Scholar 

  2. Glasziou P, Houssami N (2011) The evidence base for breast cancer screening. Prev Med 53:100–102

    Article  PubMed  Google Scholar 

  3. Anbar M (1998) Clinical thermal imaging today. IEEE Eng Med Biol Mag 17:25–33

    Article  PubMed  CAS  Google Scholar 

  4. Feig SA, Shaber GS, Schwartz GF (1977) Thermography, mammography, and clinical examination in breast cancer screening: review of 16,000 studies. Radiology 122:123–127

    PubMed  CAS  Google Scholar 

  5. Jones BF (1998) A reappraisal of the use of infrared thermal image analysis in medicine. IEEE Trans Med Imaging 17:1019–1027

    Article  PubMed  CAS  Google Scholar 

  6. Hope TA, Iles SE (2004) Technology review: the use of electrical impedance scanning in the detection of breast cancer. Breast Cancer Res 6:69–74

    Article  PubMed  Google Scholar 

  7. Wang T, Wang K, Yao Q, Chen JH et al (2010) Prospective study on combination of electrical impedance scanning and ultrasound in estimating risk of development of breast cancer in young women. Cancer Invest 28:295–303

    Article  PubMed  CAS  Google Scholar 

  8. Fuchsjaeger MH, Flory D, Reiner CS, Rudas M et al (2005) The negative predictive value of electrical impedance scanning in BI-RADS category IV breast lesions. Invest Radiol 40:478–485

    Article  PubMed  Google Scholar 

  9. Stojadinovic A, Nissan A, Shriver CD, Mittendorf EA et al (2008) Electrical impedance scanning as a new breast cancer risk stratification tool for young women. J Surg Oncol 97:112–120

    Article  PubMed  Google Scholar 

  10. Medical Tactile INC (2012) SureTouch Locations. http://medicaltactile.com/patient/screening.htm. Accessed 23 April 2012

  11. Egorov V, Kearney T, Pollak SB, Rohatgi C et al (2009) Differentiation of benign and malignant breast lesions by mechanical imaging. Breast Cancer Res Treat 118:67–80

    Article  PubMed  Google Scholar 

  12. Garra BS (2007) Imaging and estimation of tissue elasticity by ultrasound. Ultrasound Quarterly 23:255–268

    Article  PubMed  Google Scholar 

  13. Moon WK, Chang RF, Chen CJ, Chen DR, Chen WL (2005) Solid breast masses: classification with computer-aided analysis of continuous US images obtained with probe compression. Radiology 236:458–464

    Article  PubMed  Google Scholar 

  14. Leeflang MM, Scholten RJ, Rutjes AW, Reitsma JB, Bossuyt PM (2006) Use of methodological search filters to identify diagnostic accuracy studies can lead to the omission of relevant studies. J Clin Epidemiol 59:234–240

    Article  PubMed  CAS  Google Scholar 

  15. Merlin T, Weston A, Tooher R (2009) Extending an evidence hierarchy to include topics other than treatment: revising the Australian ‘levels of evidence’. BMC Med Res Methodol 9:34

    Article  PubMed  Google Scholar 

  16. Whiting P, Weswood M, Rutjes A, Reitsma J et al (2006) Evaluation of QUADAS, a tool for the quality assessment of diagnostic accuracy studies. BMC Med Res Methodol 6:9

    Article  PubMed  Google Scholar 

  17. Downs SH, Black N (1998) The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Community Health 52:377–384

    Article  PubMed  CAS  Google Scholar 

  18. Dinnes J, Deeks J, Kirby J, Roderick P (2005) A methodological review of how heterogeneity has been examined in systematic reviews of diagnostic test accuracy. Health Tech Assess 9:1–113

    CAS  Google Scholar 

  19. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560

    Article  PubMed  Google Scholar 

  20. Deeks JJ, Macaskill P, Irwig L (2005) The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J Clin Epidemiol 58:882–893

    Article  PubMed  Google Scholar 

  21. Diebold T, Jacobi V, Scholz B, Hensel C et al (2005) Value of Electrical Impedance Scanning (EIS) in the evaluation of BI-RADS(trademark) III/IV/V-lesions. Tech in Cancer Res and Treat 4:93–97

    Google Scholar 

  22. Glickman YA, Filo O, Nachaliel U, Lenington S et al (2002) Novel EIS postprocessing algorithm for breast cancer diagnosis. IEEE Trans Med Imaging 21:710–712

    Article  PubMed  Google Scholar 

  23. Szabo BK, Saracco A, Wilczek B, Bone B, Aspelin P (2005) Adjunctive diagnostic value of targeted electrical impedance imaging to conventional methods in the evaluation of breast lesions. Acta Radiol 46:782–790

    Article  PubMed  CAS  Google Scholar 

  24. Malich A, Facius M, Anderson R, Bottcher J et al (2003) Influence of size and depth on accuracy of electrical impedance scanning. Eur Radiol 13:2441–2446

    Article  PubMed  Google Scholar 

  25. Malich A, Scholz B, Kott A, Facius M et al (2007) The impact of lesion vascularisation on tumours detection by electrical impedance scanning at 200 Hz. Biomed Imaging Interv J 3:e33

    Article  PubMed  CAS  Google Scholar 

  26. Martin G, Martin R, Brieva MJ, Santamaria L (2002) Electrical impedance scanning in breast cancer imaging: correlation with mammographic and histologic diagnostic. Eur Radiol 12:1471–1478

    Article  PubMed  Google Scholar 

  27. Melloul M, Paz A, Ohana G, Laver O et al (1999) Double-phase 99mTc-sestamibi scintimammography and trans-scan in diagnosing breast cancer. J Nucl Med 40:376–380

    PubMed  CAS  Google Scholar 

  28. Wersebe A, Siegmann K, Krainick U, Fersis N et al (2002) Diagnostic potential of targeted electrical impedance scanning in classifying suspicious breast lesions. Invest Radiol 37:65–72

    Article  PubMed  Google Scholar 

  29. Arora N, Martins D, Ruggerio D, Tousimis E et al (2008) Effectiveness of a noninvasive digital infrared thermal imaging system in the detection of breast cancer. Am J Surg 196:523–526

    Article  PubMed  Google Scholar 

  30. Wishart GC, Campisi M, Boswell M, Chapman D et al (2010) The accuracy of digital infrared imaging for breast cancer detection in women undergoing breast biopsy. Eur J Surg Oncol 36:535–540

    Article  PubMed  CAS  Google Scholar 

  31. Keyserlingk JR, Ahlgren PD, Yu E, Belliveau N (1998) Infrared imaging of the breast: initial reappraisal using high-resolution digital technology in 100 successive cases of stage I and II breast cancer. Breast J 4:245–251

    Article  PubMed  CAS  Google Scholar 

  32. Chen CJ, Chang RF, Moon WK, Chen DR, Wu HK (2006) 2-D ultrasound strain images for breast cancer diagnosis using nonrigid subregion registration. Ultrasound Med Biol 32:837–846

    Article  PubMed  Google Scholar 

  33. Hardy RJ, Thompson SG (1998) Detecting and describing heterogeneity in meta-analysis. Stat Med 17:841–856

    Article  PubMed  CAS  Google Scholar 

  34. Rutjes AW, Reitsma JB, Di Nisio M, Smidt N et al (2006) Evidence of bias and variation in diagnostic accuracy studies. CMAJ 174:469–476

    PubMed  Google Scholar 

  35. Whiting P, Rutjes AW, Reitsma JB, Glas AS et al (2004) Sources of variation and bias in studies of diagnostic accuracy: a systematic review. Ann Intern Med 140:189–202

    PubMed  Google Scholar 

  36. Medical Services Advisory Committee T (2008) Digital mammography for breast cancer screening, surveillance and diagnosis. Commonwealth of Australia, Canberra

    Google Scholar 

  37. Kaufman CS, Jacobson L, Bachman BA, Kaufman LB (2006) Digital documentation of the physical examination: moving the clinical breast exam to the electronic medical record. Am J Surg 192:444–449

    Article  PubMed  Google Scholar 

  38. American College of Clinical Thermography (2012) ACCT approved thermography clinics. http://www.thermologyonline.org/Breast/breast_thermography_clinics.htm. Accessed 23 April 2012

  39. Lovett KM, Liang BA (2011) Risks of online advertisement of direct-to-consumer thermography for breast cancer screening. Nat Rev Cancer 11:827–828

    PubMed  CAS  Google Scholar 

  40. Skin Aesthetics & Medical Centre (2012) Non surgical procedures: safe breast imaging. http://skinaesthetics.com.au/safe-breast-imaging.html. Accessed 14 December 2012

  41. US Food and Drug Administration (2002) TransScan T-Scan 2000—P970033. http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfTopic/pma/pma.cfm?num=p970033. Accessed 23 April 2012

  42. Ohashi Y (1986) A study on the diagnosis of breast cancer by thermography. Qual Rev Bull 12:89–99

    Google Scholar 

  43. Button TM, Li H, Fisher P, Rosenblatt R et al (2004) Dynamic infrared imaging for the detection of malignancy. Phys Med Biol 49:3105–3116

    Article  PubMed  Google Scholar 

  44. Kontos M, Wilson R, Fentiman I (2011) Digital infrared thermal imaging (DITI) of breast lesions: sensitivity and specificity of detection of primary breast cancers. Clin Radiol 66:536–539

    Article  PubMed  CAS  Google Scholar 

  45. Parisky YR, Sardi A, Hamm R, Hughes K et al (2003) Efficacy of computerized infrared imaging analysis to evaluate mammographically suspicious lesions. Am J Roentgenol 180:263–269

    CAS  Google Scholar 

  46. Tang X, Ding H, Ye Yuan, Wang Q (2008) Morphological measurement of localized temperature increase amplitudes in breast infrared thermograms and its clinical application. Biomed Signal Process Control 3:312–318

    Article  Google Scholar 

  47. Wang J, Chang KJ, Chen CY, Chien KL et al (2010) Evaluation of the diagnostic performance of infrared imaging of the breast: a preliminary study. BioMed Eng Online 9:3

    Article  PubMed  Google Scholar 

  48. Athanasiou A, Tardivon A, Tanter M, Sigal-Zafrani B et al (2010) Breast lesions: quantitative elastography with supersonic shear imaging–preliminary results. Radiology 256:297–303

    Article  PubMed  Google Scholar 

  49. Barr RG (2010) Real-time ultrasound elasticity of the breast: initial clinical results. Ultrasound Q 26:61–66

    Article  PubMed  Google Scholar 

  50. Burnside ES, Hall TJ, Sommer AM, Hesley GK et al (2007) Differentiating benign from malignant solid breast masses with US strain imaging. Radiology 245:401–410

    Article  PubMed  Google Scholar 

  51. Chang JM, Moon WK, Cho N, Kim SJ (2011) Breast mass evaluation: factors influencing the quality of US elastography. Radiology 259:59–64

    Article  PubMed  Google Scholar 

  52. Cho N, Moon WK, Park JS, Cha JH et al (2008) Nonpalpable breast masses: evaluation by US elastography. Korean J Radiol 9:111–118

    Article  PubMed  Google Scholar 

  53. Cho N, Moon WK, Kim HY, Chang JM et al (2010) Sonoelastographic strain index for differentiation of benign and malignant nonpalpable breast masses. J Ultrasound Med 29:1–7

    PubMed  Google Scholar 

  54. Chung SY, Moon WK, Choi JW, Cho N et al (2010) Differentiation of benign from malignant nonpalpable breast masses: a comparison of computer-assisted quantification and visual assessment of lesion stiffness with the use of sonographic elastography. Acta Radiol 51:9–14

    Article  PubMed  Google Scholar 

  55. Evans A, Whelehan P, Thomson K, McLean D et al (2010) Quantitative shear wave ultrasound elastography: initial experience in solid breast masses. Breast Cancer Res 12:R104

    Article  PubMed  Google Scholar 

  56. Fleury Ede F, Fleury JC, Piato S, Roveda D Jr (2009) New elastographic classification of breast lesions during and after compression. Diagn Interv Radiol 15:96–103

    PubMed  Google Scholar 

  57. Garra BS, Cespedes EI, Ophir J, Spratt SR et al (1997) Elastography of breast lesions: initial clinical results. Radiology 202:79–86

    PubMed  CAS  Google Scholar 

  58. Giuseppetti GM, Martegani A, Di Cioccio B, Baldassarre S (2005) Elastosonography in the diagnosis of the nodular breast lesions: preliminary report. Radiol Med 110:69–76

    PubMed  Google Scholar 

  59. Itoh A, Ueno E, Tohno E, Kamma H et al (2006) Breast disease: clinical application of US elastography for diagnosis. Radiology 239:341–350

    Article  PubMed  Google Scholar 

  60. Ko ES, Choi HY, Kim RB, Noh WC (2011) Application of sonoelastography: comparison of performance between mass and non-mass lesion. Eur J Radiol 81:731–736

    Article  PubMed  Google Scholar 

  61. Kumm TR, Szabunio MM (2010) Elastography for the characterization of breast lesions: initial clinical experience. Cancer Control 17:156–161

    PubMed  Google Scholar 

  62. Lee JH, Kim SH, Kang BJ, Choi JJ et al (2011) Role and clinical usefulness of elastography in small breast masses. Acad Radiol 18:74–80

    Article  PubMed  Google Scholar 

  63. Leong LC, Sim LS, Lee YS, Ng FC et al (2010) A prospective study to compare the diagnostic performance of breast elastography versus conventional breast ultrasound. Clin Radiol 65:887–894

    Article  PubMed  CAS  Google Scholar 

  64. Moon WK, Huang CS, Shen WC, Takada E et al (2009) Analysis of elastographic and B-mode features at sonoelastography for breast tumor classification. Ultrasound Med Biol 35:1794–1802

    Article  PubMed  Google Scholar 

  65. Moon WK, Choi JW, Cho N, Park SH et al (2010) Computer-aided analysis of ultrasound elasticity images for classification of benign and malignant breast masses. Am J Roentgenol 195:1460–1465

    Article  Google Scholar 

  66. Navarro B, Ubeda B, Vallespi M, Wolf C et al (2011) Role of elastography in the assessment of breast lesions: preliminary results. J Ultrasound Med 30:313–321

    PubMed  Google Scholar 

  67. Parajuly SS, Lan PY, Yan L, Gang YZ, Lin L (2010) Breast elastography: a hospital-based preliminary study in China. Asian Pac J Cancer Prev 11:809–814

    PubMed  Google Scholar 

  68. Raza S, Odulate A, Ong EM, Chikarmane S, Harston CW (2010) Using real-time tissue elastography for breast lesion evaluation: our initial experience. J Ultrasound Med 29:551–563

    PubMed  Google Scholar 

  69. Regini E, Bagnera S, Tota D, Campanino P et al (2010) Role of sonoelastography in characterising breast nodules. Preliminary experience with 120 lesions. Radiol Med (Torino) 115:551–562

    Article  CAS  Google Scholar 

  70. Regner DM, Hesley GK, Hangiandreou NJ, Morton MJ et al (2006) Breast lesions: evaluation with US strain imaging–clinical experience of multiple observers. Radiology 238:425–437

    Article  PubMed  Google Scholar 

  71. Satake H, Nishio A, Ikeda M, Ishigaki S et al (2011) Predictive value for malignancy of suspicious breast masses of BI-RADS categories 4 and 5 using ultrasound elastography and MR diffusion-weighted imaging. Am J Roentgenol 196:202–209

    Article  Google Scholar 

  72. Scaperrotta G, Ferranti C, Costa C, Mariani L et al (2008) Role of sonoelastography in non-palpable breast lesions. Eur Radiol 18:2381–2389

    Article  PubMed  Google Scholar 

  73. Schaefer FK, Heer I, Schaefer PJ, Mundhenke C et al (2009) Breast ultrasound elastography-Results of 193 breast lesions in a prospective study with histopathologic correlation. Eur J Radiol 77:450–456

    Article  PubMed  Google Scholar 

  74. Sohn YM, Kim MJ, Kim EK, Kwak JY et al (2009) Sonographic elastography combined with conventional sonography: how much is it helpful for diagnostic performance? J Ultrasound Med 28:413–420

    PubMed  Google Scholar 

  75. Tan SM, Teh HS, Mancer JFK, Poh WT (2008) Improving B mode ultrasound evaluation of breast lesions with real-time ultrasound elastography—a clinical approach. Breast 17:252–257

    Article  PubMed  CAS  Google Scholar 

  76. Thomas A, Kummel S, Fritzsche F, Warm M et al (2006) Real-time sonoelastography performed in addition to B-mode ultrasound and mammography: improved differentiation of breast lesions? Acad Radiol 13:1496–1504

    Article  PubMed  Google Scholar 

  77. Thomas A, Warm M, Hoopmann M, Diekmann F, Fischer T (2007) Tissue Doppler and Strain imaging for evaluating tissue elasticity of breast lesions. Acad Radiol 14:522–529

    Article  PubMed  Google Scholar 

  78. Thomas A, Degenhardt F, Farrokh A, Wojcinski S et al (2010) Significant differentiation of focal breast lesions: calculation of strain ratio in breast sonoelastography. Acad Radiol 17:558–563

    Article  PubMed  Google Scholar 

  79. Wojcinski S, Farrokh A, Weber S, Thomas A et al (2010) Multicenter study of ultrasound real-time tissue elastography in 779 cases for the assessment of breast lesions: improved diagnostic performance by combining the BI-RADS®-US classification system with sonoelastography. Ultraschall Med 31:484–491

    Article  PubMed  CAS  Google Scholar 

  80. Yerli H, Yilmaz T, Kaskati T, Gulay H (2011) Qualitative and semiquantiative evaluations of solid breast lesions by sonoelastography. J Ultrasound Med 30:179–186

    PubMed  Google Scholar 

  81. Yoon JH, Kim MH, Kim EK, Moon HJ et al (2011) Interobserver variability of ultrasound elastography: how it affects the diagnosis of breast lesions. Am J Roentgenol 196:730–736

    Article  Google Scholar 

  82. Zhi H, Ou B, Luo BM, Feng X et al (2007) Comparison of ultrasound elastography, mammography, and sonography in the diagnosis of solid breast lesions. J Ultrasound Med 26:807–815

    PubMed  Google Scholar 

  83. Zhi H, Xiao XY, Yang HY, Ou B et al (2010) Ultrasonic elastography in breast cancer diagnosis: strain ratio vs 5-point scale. Acad Radiol 17:1227–1233

    Article  PubMed  Google Scholar 

  84. Zhu QL, Jiang YX, Liu JB, Liu H et al (2008) Real-time ultrasound elastography: its potential role in assessment of breast lesions. Ultrasound Med Biol 34:1232–1238

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dagmara Riitano and Thomas Sullivan from the University of Adelaide for their invaluable contributions to the data extraction and analysis completed in this review. TDV is supported by an Australian Commonwealth PhD scholarship, with a top-up from Adelaide Health Technology Assessment. CDW is supported by an NHMRC Sidney Sax Fellowship.

Conflict of interest

The authors have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas D. Vreugdenburg.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4140 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vreugdenburg, T.D., Willis, C.D., Mundy, L. et al. A systematic review of elastography, electrical impedance scanning, and digital infrared thermography for breast cancer screening and diagnosis. Breast Cancer Res Treat 137, 665–676 (2013). https://doi.org/10.1007/s10549-012-2393-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-012-2393-x

Keywords

Navigation