Skip to main content

Advertisement

Log in

Accuracy of quantitative ultrasound elastography for differentiation of malignant and benign breast abnormalities: a meta-analysis

  • Review
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

The purpose of this study was to systematically review recent literature on diagnostic performance of strain ratio and length ratio, two different strain measurements in ultrasound elastography, for differentiating benign and malignant breast masses. A literature search of PubMed and other medical and general purpose databases from inception through January 2012 was conducted. Published studies that evaluated the diagnostic performance of ultrasound elastography alone reporting either strain ratio or length ratio for characterization of focal breast lesions and using cytology (fine needle aspiration) or histology (core biopsy) as a reference standard were included. Summary diagnostic performance measures were assessed using bivariate generalized linear mixed modeling. Nine studies reported strain ratio for 2,087 breast masses (667 cancers, 1,420 benign lesions). Summary sensitivity and specificity were 88 % (95 % Credible Interval (CrI), 84–91 %), and 83 % (95 % CrI, 78–88 %), respectively. The positive and negative likelihood ratios (LR) were 5.57 (95 % CrI, 3.85–8.01) and 0.14 (95 % CrI, 0.09–0.20), respectively. The inconsistency index for heterogeneity was 6 % (95 % CrI, 1–22 %) for sensitivity and 8 % (95 % CrI, 3–24 %) for specificity. Analysis of three studies reporting length ratio for 450 breast masses demonstrated sensitivity and specificity of 98 % (95 % CrI, 93–99 %) and 72 % (95 % CrI, 31–96 %), respectively. Strain ratio and length ratio have good diagnostic performance for distinguishing benign from malignant breast masses. Although, this performance may not be incrementally superior to that of breast imaging reporting and data system (BIRADS) in B-mode ultrasound, the application of USE using strain ratio or length ratio in combination with USB may have the potential to benefit the patients, and this requires further comparative effectiveness and cost-effectiveness analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

USB:

B-mode ultrasound

USE:

Breast ultrasound elastography

BIRADS:

Breast imaging reporting and data system

CrI:

Credible interval

FN:

False negatives

FP:

False positives

I 2 :

Inconsistency index

LR:

Likelihood ratios

PRISMA:

Preferred Reporting Items for Systematic Reviews and Meta-analyses

QUADAS:

Quality Assessment of Diagnostic Accuracy Studies

STARD:

Standards for Reporting of Diagnostic Accuracy checklist

SROC:

Summary receiver operating characteristic

TN:

True negatives

TP:

True positives

References

  1. Hatzung G, Grunwald S, Zygmunt M et al (2010) Sonoelastography in the diagnosis of malignant and benign breast lesions: initial clinical experiences. Ultraschall Med 31:596–603

    Article  PubMed  CAS  Google Scholar 

  2. Garra BS (2007) Imaging and estimation of tissue elasticity by ultrasound. Ultrasound Q 23:255–268

    Article  PubMed  Google Scholar 

  3. Wells PN, Liang HD (2011) Medical ultrasound: imaging of soft tissue strain and elasticity. J R Soc Interface 8:1521–1549

    Article  PubMed  Google Scholar 

  4. Regini E, Bagnera S, Tota D et al (2010) Role of sonoelastography in characterising breast nodules. Preliminary experience with 120 lesions. Radiol Med 115:551–562

    Article  PubMed  CAS  Google Scholar 

  5. Itoh A, Ueno E, Tohno E et al (2006) Breast disease: clinical application of US elastography for diagnosis. Radiology 239:341–350

    Article  PubMed  Google Scholar 

  6. Chang JM, Moon WK, Cho N, Kim SJ (2011) Breast mass evaluation: factors influencing the quality of US elastography. Radiology 259:59–64

    Article  PubMed  Google Scholar 

  7. Thomas A, Degenhardt F, Farrokh A et al (2010) Significant differentiation of focal breast lesions: calculation of strain ratio in breast sonoelastography. Acad Radiol 17:558–563

    Article  PubMed  Google Scholar 

  8. Fischer T, Peisker U, Fiedor S et al (2011) Significant differentiation of focal breast lesions: raw data-based calculation of strain ratio. Ultraschall Med. doi:10.1055/s-0031-1273222

  9. Leong LC, Sim LS, Lee YS et al (2010) A prospective study to compare the diagnostic performance of breast elastography versus conventional breast ultrasound. Clin Radiol 65:887–894

    Article  PubMed  CAS  Google Scholar 

  10. Sadigh G, Carlos RC, Neal CH, Dwamena BA (2011) Ultrasonographic differentiation of malignant from benign breast lesions: a meta-analytic comparison of elasticity and BIRADS scoring. Breast Cancer Res Treat. doi:10.1007/s10549-011-1857-8

  11. Yerli H, Yilmaz T, Kaskati T, Gulay H (2011) Qualitative and semiquantitative evaluations of solid breast lesions by sonoelastography. J Ultrasound Med 30:179–186

    PubMed  Google Scholar 

  12. Lee JH, Kim SH, Kang BJ et al (2011) Role and clinical usefulness of elastography in small breast masses. Acad Radiol 18:74–80

    Article  PubMed  Google Scholar 

  13. Barr RG (2010) Real-time ultrasound elasticity of the breast: initial clinical results. Ultrasound Q 26:61–66

    Article  PubMed  Google Scholar 

  14. Kumm TR, Szabunio MM (2010) Elastography for the characterization of breast lesions: initial clinical experience. Cancer Control 17:156–161

    PubMed  Google Scholar 

  15. Zhi H, Xiao XY, Yang HY et al (2010) Ultrasonic elastography in breast cancer diagnosis: strain ratio vs 5-point scale. Acad Radiol 17:1227–1233

    Article  PubMed  Google Scholar 

  16. Cho N, Moon WK, Kim HY et al (2010) Sonoelastographic strain index for differentiation of benign and malignant nonpalpable breast masses. J Ultrasound Med 29:1–7

    PubMed  Google Scholar 

  17. Farrokh A, Wojcinski S, Degenhardt F (2010) Diagnostic value of strain ratio measurement in the differentiation of malignant and benign breast lesions. Ultraschall Med 32:400–405

    Article  PubMed  Google Scholar 

  18. Moon WK, Huang CS, Shen WC et al (2009) Analysis of elastographic and B-mode features at sonoelastography for breast tumor classification. Ultrasound Med Biol 35:1794–1802

    Article  PubMed  Google Scholar 

  19. Regner DM, Hesley GK, Hangiandreou NJ et al (2006) Breast lesions: evaluation with US strain imaging—clinical experience of multiple observers. Radiology 238:425–437

    Article  PubMed  Google Scholar 

  20. Cochrane Diagnostic Test Accuracy Review Working Group. http://srdta.cochrane.org/handbook-dta-reviews. Accessed 15 Aug 2011

  21. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 151(264–269):W264

    Google Scholar 

  22. Landoni V, Francione V, Marzi S et al (2011) Quantitative analysis of elastography images in the detection of breast cancer. Eur J Radiol. doi:10.1016/j.ejrad.2011.04.012

  23. Whiting P, Rutjes AW, Reitsma JB et al (2003) The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol 3:25

    Article  PubMed  Google Scholar 

  24. Chu H, Cole SR (2006) Bivariate meta-analysis of sensitivity and specificity with sparse data: a generalized linear mixed model approach. J Clin Epidemiol 59:1331–1332 author reply 1332-1333

    Article  PubMed  Google Scholar 

  25. Arends LR, Hamza TH, van Houwelingen JC et al (2008) Bivariate random effects meta-analysis of ROC curves. Med Decis Making 28:621–638

    Article  PubMed  CAS  Google Scholar 

  26. Macaskill P, Gatsonis C, Deeks JJ, Harbord RM, Takwoingi Y (2010) Chapter 10: Analysing and presenting results. In: Deeks JJ, Bossuyt PM, Gatsonis C (eds) Cochrane handbook for systematic reviews of diagnostic test accuracy version 1.0. The Cochrane Collaboration. http://srdta.cochrane.org/

  27. Gatsonis C, Paliwal P (2006) Meta-analysis of diagnostic and screening test accuracy evaluations: methodologic primer. AJR Am J Roentgenol 187:271–281

    Article  PubMed  Google Scholar 

  28. Chappell FM, Raab GM, Wardlaw JM (2009) When are summary ROC curves appropriate for diagnostic meta-analyses? Stat Med 28:2653–2668

    Article  PubMed  CAS  Google Scholar 

  29. Deeks JJ, Macaskill P, Irwig L (2005) The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J Clin Epidemiol 58:882–893

    Article  PubMed  Google Scholar 

  30. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560

    Article  PubMed  Google Scholar 

  31. Dwamena BA (2007) MIDAS: Stata module for meta-analytical integration of diagnostic test accuracy studies. Statistical Software Components S456880. Boston College Department of Economics, Boston. http://ideas.repec.org/c/boc/bocode/s456880.html

  32. Ikeda K, Ogawa Y, Takii M et al (2012) A role for elastography in the diagnosis of breast lesions by measuring the maximum fat lesion ratio (max-FLR) by tissue Doppler imaging. Breast Cancer 19:71–76

    Google Scholar 

  33. Wang Z, Yang T, Wu Z et al (2010) Correlation between elastography score and strain rate ratio in breast small tumor. Zhong Nan Da Xue Xue Bao Yi Xue Ban 35:928–932

    PubMed  Google Scholar 

  34. Yoon JH, Kim MH, Kim EK et al (2011) Interobserver variability of ultrasound elastography: how it affects the diagnosis of breast lesions. AJR Am J Roentgenol 196:730–736

    Article  PubMed  Google Scholar 

  35. Meng W, Zhang G, Wu C et al (2011) Preliminary results of acoustic radiation force impulse (ARFI) ultrasound imaging of breast lesions. Ultrasound Med Biol 37:1436–1443

    Article  PubMed  Google Scholar 

  36. Jones CM, Athanasiou T (2009) Diagnostic accuracy meta-analysis: review of an important tool in radiological research and decision making. Br J Radiol 82:441–446

    Article  PubMed  CAS  Google Scholar 

  37. Ament A, Hasman A (1993) Optimal test strategy in the case of two tests and one disease. Int J Biomed Comput 33:179–197

    Article  PubMed  CAS  Google Scholar 

  38. Thomas A, Kummel S, Fritzsche F et al (2006) Real-time sonoelastography performed in addition to B-mode ultrasound and mammography: improved differentiation of breast lesions? Acad Radiol 13:1496–1504

    Article  PubMed  Google Scholar 

  39. Athanasiou A, Tardivon A, Tanter M et al (2010) Breast lesions: quantitative elastography with supersonic shear imaging–preliminary results. Radiology 256:297–303

    Article  PubMed  Google Scholar 

  40. Chung SY, Moon WK, Choi JW et al (2010) Differentiation of benign from malignant nonpalpable breast masses: a comparison of computer-assisted quantification and visual assessment of lesion stiffness with the use of sonographic elastography. Acta Radiol 51:9–14

    Article  PubMed  Google Scholar 

  41. Sohn YM, Kim MJ, Kim EK et al (2009) Sonographic elastography combined with conventional sonography: how much is it helpful for diagnostic performance? J Ultrasound Med 28:413–420

    PubMed  Google Scholar 

  42. Thomas A, Fischer T, Frey H et al (2006) Real-time elastography—an advanced method of ultrasound: first results in 108 patients with breast lesions. Ultrasound Obstet Gynecol 28:335–340

    Article  PubMed  CAS  Google Scholar 

  43. Raza S, Odulate A, Ong EM et al (2010) Using real-time tissue elastography for breast lesion evaluation: our initial experience. J Ultrasound Med 29:551–563

    PubMed  Google Scholar 

  44. Ciurea AI, Bolboaca SD, Ciortea CA et al (2011) The influence of technical factors on sonoelastographic assessment of solid breast nodules. Ultraschall Med 32(Suppl 1):S27–S34

    Article  PubMed  Google Scholar 

  45. Bossuyt PM, Reitsma JB, Bruns DE et al (2003) Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative. Radiology 226:24–28

    Article  PubMed  Google Scholar 

  46. Schuetz GM, Zacharopoulou NM, Schlattmann P, Dewey M (2010) Meta-analysis: noninvasive coronary angiography using computed tomography versus magnetic resonance imaging. Ann Intern Med 152:167–177

    PubMed  Google Scholar 

Download references

Conflict of interest

Ruth Carlos is a member of physician’s advisory board of Philips. Gelareh Sadigh, Colleen Neal and Ben Dwamena have no conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gelareh Sadigh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 51 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadigh, G., Carlos, R.C., Neal, C.H. et al. Accuracy of quantitative ultrasound elastography for differentiation of malignant and benign breast abnormalities: a meta-analysis. Breast Cancer Res Treat 134, 923–931 (2012). https://doi.org/10.1007/s10549-012-2020-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-012-2020-x

Keywords

Navigation