Skip to main content
Log in

Converging Evidence for the Advantage of Dynamic Facial Expressions

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Neuroimaging evidence suggests that dynamic facial expressions elicit greater activity than static face stimuli in brain structures associated with social cognition, interpreted as greater ecological validity. However, a quantitative meta-analysis of brain activity associated with dynamic facial expressions is lacking. The current study investigated, using three fMRI experiments, activity elicited by (a) dynamic and static happy faces, (b) dynamic and static happy and angry faces, and (c) dynamic faces and dynamic flowers. In addition, using activation likelihood estimate (ALE) meta-analysis, we determined areas concordant across published studies that (a) used dynamic faces and (b) specifically compared dynamic and static emotional faces. The middle temporal gyri (Experiment 1) and superior temporal sulci (STS; Experiment 1 and 2) were more active for dynamic than static faces. In contrasts with the baseline the amygdalae were more active for dynamic faces (Experiment 1 and 2) and the fusiform gyri were active for all conditions (all Experiments). The ALE meta-analyses revealed concordant activation in all of these regions as well as in areas associated with cognitive manipulations (inferior frontal gyri). Converging data from the experiments and the meta-analyses suggest that dynamic facial stimuli elicit increased activity in regions associated with interpretation of social signals and emotional processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Development of the MacBrain Face Stimulus Set was overseen by Nim Tottenham and supported by the John D. and Catherine T. MacArthur Foundation Research Network on Early Experience and Brain Development. Please contact Nim Tottenham at tott0006@tc.umn.edu for more information concerning the stimulus set.

References

  • Adolphs R (2002) Neural systems for recognizing emotion. Curr Opin Neurobiol 12:169–177

    Article  PubMed  CAS  Google Scholar 

  • Adolphs R (2003) Cognitive neuroscience of human social behaviour. Nat Rev Neurosci 4:165–178

    Article  PubMed  CAS  Google Scholar 

  • Allison T, Puce A, McCarthy G (2000) Social perception from visual cues: role of the STS region. Trends Cogn Sci 4:267–278

    Article  PubMed  Google Scholar 

  • Back E, Ropar D, Mitchell P (2007) Do the eyes have it? Inferring mental states from animated faces in autism. Child Dev 78:397–411

    Article  PubMed  Google Scholar 

  • Biele C, Grabowska A (2006) Sex differences in perception of emotion intensity in dynamic and static facial expressions. Exp Brain Res 171:1–6

    Article  PubMed  Google Scholar 

  • Britton JC, Phan KL, Taylor SF, Welsh RC, Berridge KC, Liberzon I (2006) Neural correlates of social and nonsocial emotions: an fMRI study. Neuroimage 31:397–409

    Article  PubMed  Google Scholar 

  • Carter EJ, Pelphrey KA (2008) Friend or foe? Brain systems involved in the perception of dynamic signals of menacing and friendly social approaches. Soc Neurosci 3:151–163

    Article  PubMed  Google Scholar 

  • Christ SE, Van Essen DC, Watson JM, Brubaker LE, McDermott KB (2009) The contributions of prefrontal cortex and executive control to deception: evidence from activation likelihood estimate meta-analyses. Cereb Cortex 19:1557–1566

    Article  PubMed  Google Scholar 

  • Christoff K, Gabrieli JDE (2000) The frontopolar cortex and human cognition: evidence for a rostrocaudal hierarchical organization within the human prefrontal cortex. Psychobiology 28:168–186

    Google Scholar 

  • Corbetta M, Akbudak E, Conturo TE, Snyder AZ, Ollinger JM, Drury HA, Linenweber MR, Petersen SE, Raichle ME, Van Essen DC, Shulman GL (1998) A common network of functional areas for attention and eye movements. Neuron 21:761–773

    Article  PubMed  CAS  Google Scholar 

  • Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29:162–173

    Article  PubMed  CAS  Google Scholar 

  • Di Martino A, Ross K, Uddin LQ, Sklar AB, Castellanos FX, Milham MP (2009) Functional brain correlates of social and nonsocial processes in autism spectrum disorders: an activation likelihood estimation meta-analysis. Biol Psychiatry 65:63–74

    Article  PubMed  Google Scholar 

  • Eickhoff SB, Laird AR, Grefkes C, Wang LE, Zilles K, Fox PT (2009) Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Hum Brain Mapp 30:2907–2926

    Article  PubMed  Google Scholar 

  • Ekman P, Friesen WV (1976) Pictures of facial affect. Consulting Psychologist Press, Palo Alto, CA

    Google Scholar 

  • Ellison-Wright I, Glahn DC, Laird AR, Thelen SM, Bullmore E (2008) The anatomy of first-episode and chronic schizophrenia: an anatomical likelihood estimation meta-analysis. Am J Psychiatry 165:1015–1023

    Article  PubMed  Google Scholar 

  • Frijda NH (1953) The understanding of facial expression of emotion. Acta Psychol 9:294–362

    Article  Google Scholar 

  • Fusar-Poli P, Placentino A, Carletti F, Landi P, Allen P, Surguladze S, Benedetti F, Abbamonte M, Gasparotti R, Barale F, Perez J, McGuire P, Politi P (2009) Functional atlas of emotional faces processing: a voxel-based meta-analysis of 105 functional magnetic resonance imaging studies. J Psychiat Neurosci 34(6):418–432

    Google Scholar 

  • Gaillard WD, Grandin CB, Xu B (2001) Developmental aspects of pediatric fMRI: considerations for image acquisition, analysis, and interpretation. Neuroimage 13:239–249

    Article  PubMed  CAS  Google Scholar 

  • Gepner B, Deruelle C, Grynfeltt S (2001) Motion and emotion: a novel approach to the study of face processing by young autistic children. J Autism Dev Disord 31:37–45

    Article  PubMed  CAS  Google Scholar 

  • Gobbini MI, Haxby JV (2007) Neural systems for recognition of familiar faces. Neuropsychologia 45:32–41

    Article  PubMed  Google Scholar 

  • Grosbras MH, Paus T (2006) Brain networks involved in viewing angry hands or faces. Cer Cortex 16:1087–1096

    Article  Google Scholar 

  • Harwood NK, Hall LJ, Shinkfield AJ (1999) Recognition of facial emotional expressions from moving and static displays by individuals with mental retardation. Am J Ment Retard 104:270–278

    Article  PubMed  CAS  Google Scholar 

  • Haxby JV, Hoffman EA, Gobbini MI (2000) The distributed human neural system for face perception. Trends Cogn Sci 4:223–233

    Article  PubMed  Google Scholar 

  • Hurlemann R, Rehme AK, Diessel M, Kukolja J, Maier W, Walter H, Cohen MX (2008) Segregating intra-amygdalar responses to dynamic facial emotion with cytoarchitectonic maximum probability maps. J Neurosci Methods 172:13–20

    Article  PubMed  Google Scholar 

  • Ishai A, Haxby JV, Ungerleider LG (2002) Visual imagery of famous faces: effects of memory and attention revealed by fMRI. Neuroimage 17:1729–1741

    Article  PubMed  Google Scholar 

  • Kilts CD, Egan G, Gideon DA, Ely TD, Hoffman JM (2003) Dissociable neural pathways are involved in the recognition of emotion in static and dynamic facial expressions. Neuroimage 18:156–168

    Article  PubMed  Google Scholar 

  • Kober H, Barrett LF, Joseph J, Bliss-Moreau E, Lindquist K, Wager TD (2008) Functional grouping and cortical-subcortical interactions in emotion: a meta-analysis of neuroimaging studies. Neuroimage 42:998–1031

    Article  PubMed  Google Scholar 

  • Kozel NJ, Gitter GA (1968) Perception of emotion: differences in mode of presentation, sex of perceiver, and race of expressor. CRC Report 18:1–61

    Google Scholar 

  • LaBar KS, Crupain MJ, Voyvodic JT, McCarthy G (2003) Dynamic perception of facial affect and identity in the human brain. Cer Cortex 13:1023–1033

    Article  Google Scholar 

  • Laird AR, Fox PM, Price CJ, Glahn DC, Uecker AM, Lancaster JL, Turkeltaub PE, Kochunov P, Fox PT (2005) ALE meta-analysis: controlling the false discovery rate and performing statistical contrasts. Hum Brain Mapp 25:155–164

    Article  PubMed  Google Scholar 

  • Laird AR, Lancaster JL, Fox PT (2009) Lost in localization? The focus is meta-analysis. Neuroimage 48:18–20

    Article  PubMed  Google Scholar 

  • Lancaster JL, Tordesillas-Gutierrez D, Martinez M, Salinas F, Evans A, Zilles K, Mazziotta JC, Fox PT (2007) Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template. Hum Brain Mapp 28:1194–1205

    Article  PubMed  Google Scholar 

  • Lanyon LJ, Giaschi D, Young SA, Fitzpatrick K, Diao L, Bjornson BH, Barton JJ (2009) Combined functional MRI and diffusion tensor imaging analysis of visual motion pathways. J Neuroophthalmol 29:96–103

    PubMed  Google Scholar 

  • Le Grand R, Mondloch CJ, Maurer D, Brent HP (2003) Expert face processing requires visual input to the right hemisphere during infancy. Nat Neurosci 6:1108–1112

    Article  PubMed  CAS  Google Scholar 

  • Lee LC, Andrews TJ, Johnson SJ, Woods W, Gouws A, Green GGR, Young AW (2010) Neural responses to rigidly moving faces displaying shifts in social attention investigated with fMRI and MEG. Neuropsychologia 48:447–490

    Google Scholar 

  • Leibenluft E, Gobbini MI, Harrison T, Haxby JV (2004) Mothers’ neural activation in response to pictures of their children and other children. Biol Psychiatry 56:225–232

    Article  PubMed  Google Scholar 

  • Luna B, Velanova K, Geier CF (2010) Methodological approaches in developmental neuroimaging studies. Hum Brain Mapp 31:863–871

    PubMed  Google Scholar 

  • Maunsell JH, Van Essen DC (1983) Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. J Neurophysiol 49:1127–1147

    PubMed  CAS  Google Scholar 

  • McCarthy G, Puce A, Gore JC, Allison T (1997) Face-specific processing in the human fusiforrn gyms. J Cogn Neurosci 9:605–610

    Article  Google Scholar 

  • Morris JS, Friston KJ, Buchel C, Frith CD, Young AW, Calder AJ, Dolan RJ (1998) A neuromodulatory role for the human amygdala in processing emotional facial expressions. Brain 121(Pt 1):47–57

    Article  PubMed  Google Scholar 

  • Morris JS, Ohman A, Dolan RJ (1999) A subcortical pathway to the right amygdala mediating “unseen” fear. Proc Natl Acad Sci USA 96:1680–1685

    Article  PubMed  CAS  Google Scholar 

  • Movshon JA, Adelson EH, Gizzi MS, Newsome WT (1985) The analysis of moving visual patterns. In: Chagas C, Gattass R, Gross C (eds) Pattern recognition mechanisms. Pontificiae Academiae Scientiarum Scripta Varia 54, pp 117–151

  • Palermo R, Rhodes G (2007) Are you always on my mind? A review of how face perception and attention interact. Neuropsychologia 45:75–92

    Article  PubMed  Google Scholar 

  • Pelphrey KA, Sasson NJ, Reznick S, Paul G, Goldman BD, Piven J (2002) Visual scanning of faces in autism. J Autism Dev Disord 32:249–261

    Article  PubMed  Google Scholar 

  • Pelphrey KA, Morris JP, McCarthy G (2004) Grasping the intentions of others: the perceived intentionality of an action influences activity in the superior temporal sulcus during social perception. J Cogn Neurosci 16:1706–1716

    Article  PubMed  Google Scholar 

  • Pelphrey KA, Morris JP, McCarthy G, Labar KS (2007) Perception of dynamic changes in facial affect and identity in autism. Soc Cogn Affect Neurosci 2:140–149

    Article  PubMed  Google Scholar 

  • Petrides M (1996) Lateral frontal cortical contribution to memory. Neurosciences 8:57–63

    Google Scholar 

  • Phan KL, Wager T, Taylor SF, Liberzon I (2002) Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. NeuroImage 16:331–348

    Article  PubMed  Google Scholar 

  • Puce A, Allison T, Gore JC, McCarthy G (1995) Face-sensitive regions in human extrastriate cortex studied by functional MRI. J Neurophysiol 74:1192–1199

    PubMed  CAS  Google Scholar 

  • Rhodes G (1993) Configural coding, expertise, and the right hemisphere advantage for face recognition. Brain Cogn 22:19–41

    Article  PubMed  CAS  Google Scholar 

  • Robins DL, Hunyadi E, Schultz RT (2009) Superior temporal activation in response to dynamic audio-visual emotional cues. Brain Cogn 69:269–278

    Article  PubMed  Google Scholar 

  • Rutherford MD, Baron-Cohen S, Wheelwright S (2002) Reading the mind in the voice: a study with normal adults and adults with asperger syndrome and high functioning autism. J Autism Dev Disord 32:189–194

    Article  PubMed  CAS  Google Scholar 

  • Sato W, Kochiyama T, Yoshikawa S, Naito E, Matsumura M (2004) Enhanced neural activity in response to dynamic facial expressions of emotion: an fMRI study. Cogn Brain Res 20:81–91

    Article  Google Scholar 

  • Saxe R, Xiao DK, Kovacs G, Perrett DI, Kanwisher N (2004) A region of right posterior superior temporal sulcus responds to observed intentional actions. Neuropsychologia 42:1435–1446

    Article  PubMed  CAS  Google Scholar 

  • Schultz J, Pilz KS (2009) Natural facial motion enhances cortical responses to faces. Exp Brain Res 194:465–475

    Article  PubMed  Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotactic atlas of the human brain. Thieme, New York

    Google Scholar 

  • Taylor MJ, Arsalidou M, Bayless SJ, Morris D, Evans JW, Barbeau EJ (2009) Neural correlates of personally familiar faces: parents, partner and own faces. Hum Brain Mapp 30:2008–2020

    Article  PubMed  Google Scholar 

  • Trautmann SA, Fehr T, Herrmann M (2009) Emotions in motion: dynamic compared to static facial expressions of disgust and happiness reveal more widespread emotion-specific activations. Brain Res 1284:100–115

    Article  PubMed  CAS  Google Scholar 

  • Turkeltaub PE, Eden GF, Jones KM, Zeffiro TA (2002) Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. Neuroimage 16:765–780

    Article  PubMed  Google Scholar 

  • Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) Analysis of visual behavior. MIT Press, Cambridge, MA, pp 549–586

    Google Scholar 

  • Uono S, Sato W, Toichi M (2010) Brief report: representational momentum for dynamic facial expressions in pervasive developmental disorder. J Autism Dev Disord 40:371–377

    Article  PubMed  Google Scholar 

  • Vuilleumier P, Pourtois G (2007) Distributed and interactive brain mechanisms during emotion face perception: evidence from functional neuroimaging. Neuropsychologia 45:174–194

    Article  PubMed  Google Scholar 

  • Vuilleumier P, Schwartz S (2001) Emotional facial expressions capture attention. Neurology 56:153–158

    PubMed  CAS  Google Scholar 

  • Wehrle T, Kaiser S, Schmidt S, Scherer KR (2000) Studying the dynamics of emotional expression using synthesized facial muscle movements. J Pers Soc Psychol 78:105–119

    Article  PubMed  CAS  Google Scholar 

  • Wolfe JM (2007) Guided search 4.0: current progress with a model of visual search. In: Gray W (ed) Integrated models of cognitive systems. Oxford, New York, pp 99–119

    Google Scholar 

  • Xiong Z, Wu X, Cheng S, Hua J (2003) Lossy-to-lossless compression of medical volumetric data using three-dimensional integer wavelet transforms. IEEE Trans Med Imaging 22:459–470

    Article  PubMed  Google Scholar 

  • Yoshikawa S, Sato W (2006) Enhanced perceptual, emotional, and motor processing in response to dynamic facial expressions of emotion. Jpn Psychol Res 48:213–222

    Article  Google Scholar 

  • Zeki S, Watson JD, Lueck CJ, Friston KJ, Kennard C, Frackowiak RS (1991) A direct demonstration of functional specialization in human visual cortex. J Neurosci 11:641–649

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Sarah Bayless for creating the dynamic stimuli. This work was supported by a CIHR grant to MJT (MOP-81161).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Arsalidou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 113 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arsalidou, M., Morris, D. & Taylor, M.J. Converging Evidence for the Advantage of Dynamic Facial Expressions. Brain Topogr 24, 149–163 (2011). https://doi.org/10.1007/s10548-011-0171-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-011-0171-4

Keywords

Navigation