Skip to main content

Advertisement

Log in

A Power Calculator for the Classical Twin Design

  • Brief Communication
  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

Power is a ubiquitous, though often overlooked, component of any statistical analyses. Almost every funding agency and institutional review board requires that some sort of power analysis is conducted prior to data collection. While there are several excellent on line power calculators for independent observations, twin studies pose unique challenges that are not incorporated into these algorithms. The goal of the current manuscript is to outline a general method for calculating power in twin studies, and to provide functions to allow researchers to easily conduct power analyses for a range of common twin models. Several scenarios are discussed to demonstrate the importance of various factors that influence the power within the classical twin design and to serve as examples for the provided functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Boker S, Neale M, Maes H, Wilde M, Spiegel M, Brick T, Fox J (2011) Openmx: an open source extended structural equation modeling framework. Psychometrika 76(2):306–317

    Article  PubMed  PubMed Central  Google Scholar 

  • Boker SM, Neale MC, Maes HH, Wilde MJ, Spiegel M, Brick TR, Driver C (2015) Openmx 2.3.1 user guide [Computer software manual]

  • Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Erlbaum Associates, Mahwah

    Google Scholar 

  • Dominicus A, Skrondal A, Gjessing HK, Pedersen NL, Palmgren J (2006) Likelihood ratio tests in behavioral genetics: problems and solutions. Behav Genet 36(2):331–340. doi:10.1007/s10519-005-9034-7

    Article  PubMed  Google Scholar 

  • Harris H (1948) On sex limitation in human genetics. Eugen Rev 40(2):70–76

    PubMed  PubMed Central  Google Scholar 

  • Martin NG, Eaves LJ, Kearsey MJ, Davies P (1978) The power of the classical twin study. Heredity 40(1):97116

    Article  Google Scholar 

  • Medland SE (2004) Alternate parameterization for scalar and non-scalar sex-limitation models in Mx. Twin Res 7(3):299–305

    Article  PubMed  Google Scholar 

  • Neale MC, Eaves LJ, Kendler KS (1994) The power of the classical twin method to resolve variation in threshold traits. Behav Genet 24:239–258

    Article  PubMed  Google Scholar 

  • Neale MC, Hunter MD, Pritikin JN, Zahery M, Brick TR, Kickpatrick RM, Boker SM (2015). OpenMx 2.0: extended structural equation and statistical modeling. Psychometrika. doi: 10.1007/s11336-014-9435-8

  • Neale MC, Rysamb E, Jacobson K (2006) Multivariate genetic analysis of sex limitation and g x e interaction. Twin Res Hum Genet 9(4):481–489. doi:10.1375/183242706778024937

    Article  PubMed  PubMed Central  Google Scholar 

  • Posthuma D, Boomsma DI (2000) A note on the statistical power in extended twin designs. Behav Genet 30(2):147–158

    Article  PubMed  Google Scholar 

  • R Development Core Team (2008) R: A language and environment for statistical computing [Computer software manual]. Vienna. Retrieved from http://www.R-project.org (ISBN 3-900051-07-0)

  • Visscher PM (2004) Power of the classical twin design revisited. Twin Res 7(5):505–512

    Article  PubMed  Google Scholar 

  • Visscher PM (2006) A note on the asymptotic distribution of likelihood ratio tests to test variance components. Twin Res Hum Genet 9(4):490–495. doi:10.1375/183242706778024928

    Article  PubMed  Google Scholar 

  • Wu H, Neale MC (2012) Adjusted confidence intervals for a bounded parameter. Behav Genet 42(6):886–898. doi:10.1007/s10519-012-9560-z

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

An earlier version of this paper was presented at the 2016 International Twin Workshop, March 10th, 2016. The author would like to thank the workshop faculty and students for their suggestions to improve the paper. This research was supported by by R25MH-019918 (PI: Hewitt), R01DA-018673 (PI: Neale) and R25DA-26119 (PI: Neale).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brad Verhulst.

Ethics declarations

Conflict of interest

Brad Verhulst declares that he has no conflicts of interest.

Human and animal rights and informed consent

This article does not contain any studies with human or animal participants performed by any of the authors.

Additional information

Edited by John K Hewitt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verhulst, B. A Power Calculator for the Classical Twin Design. Behav Genet 47, 255–261 (2017). https://doi.org/10.1007/s10519-016-9828-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10519-016-9828-9

Keywords

Navigation