Skip to main content

Advertisement

Log in

Predicting Cognitive Executive Functioning with Polygenic Risk Scores for Psychiatric Disorders

  • Original Research
  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

Executive functions (EFs) have been proposed as an endophenotype for psychopathology because EF deficits are associated with most psychiatric disorders. To examine this hypothesis, we derived polygenic risk scores for autism, attention-deficit/hyperactive disorder (ADHD), bipolar disorder, major depression (MDD), and schizophrenia, using genome-wide data from the Psychiatric Genomics Consortium as discovery samples. We then examined the relationships between these polygenic risk scores and three separable EF components measured with a latent variable model. We also examined the relationship between genetic risk for ADHD and MDD and their respective symptom counts and lifetime diagnoses. We found no evidence for larger effect sizes for EFs as endophenotypes for psychiatric disorders. However, larger sample sizes will be important in examining this relationship further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Across all waves, only 4 scores were not computed because the participant did not answer at least 16 questions.

  2. Visual inspection involved comparing the self-reported ancestry to the places in the distribution that showed breakpoints (or drop-offs) between the sample's ancestry groups. This resulted in identification of European ancestry participants by component 1 > 0.014, 0 < component 2 < 0.013, and component 3 > -0.006.

  3. To include individuals without genetic data in the estimation of the EF latent variables (Mplus will exclude individuals missing on covariates) and other phenotypic measures, we imputed missing PCs as the average for that self-identified ethnicity in our genetic sample. The number of individuals who contributed to each phenotype was as follows: EFs = 1543; CES-D = 2875; CBCL = 1684; IQ = 1571; DIS diagnoses = 2875.

  4. This interaction term was included even though it was not significant in any models.

References

  • Achenbach TM (1991) Manual for the Child Behavior Checklist 4-18 and 1991 Profile. University of Vermont Department of Psychiatry, Burlington

    Google Scholar 

  • Amann B, Gomar JJ, Ortiz-Gil J, McKenna P, Sans-Sansa B, Sarró S, Pomarol-Clotet E (2012) Executive dysfunction and memory impairment in schizoaffective disorder: a comparison with bipolar disorder, schizophrenia and healthy controls. Psychol Med 42:2127–2135

    Article  PubMed  Google Scholar 

  • Bollen KA (1989) Structural equations with latent variables. Wiley, New York

    Book  Google Scholar 

  • Browning B, Yu Z (2009) Simultaneous genotype calling and haplotype phase inference improves genotype accuracy and reduces false positive associations for genome-wide association studies. Am J Hum Genet 85:847–861

    Article  PubMed  PubMed Central  Google Scholar 

  • Burdick KE, Gunawardane N, Woodberry K, Malhotra AK (2009) The role of general intelligence as an intermediate phenotype for neuropsychiatric disorders. Cognit Neuropsychiatr 12:299–311

    Article  Google Scholar 

  • Camargo A, Azuaje F, Wang H, Zheng H (2008) Permutation-based statistical tests for multiple hypotheses. Source Code Biol Med 3:15

    Article  PubMed  PubMed Central  Google Scholar 

  • Cannon TD, Keller MC (2006) Endophenotypes in the genetic analyses of mental disorders. Annu Rev Clin Psychol 2:267–290

    Article  PubMed  Google Scholar 

  • Davis OSP, Butcher LM, Docherty SJ, Meaburn EL, Curtis CJC, Simpson MA, Plomin R (2010) A three-stage genome-wide association study of general cognitive ability: hunting the small effects. Behav Genet 40:759–767

    Article  PubMed  PubMed Central  Google Scholar 

  • Delaneau O, Marchini J, Zagury JF (2012) A linear complexity phasing method for thousands of genomes. Nat Methods 9:179–181

    Article  Google Scholar 

  • Derringer J, Corley RP, Haberstick BC, Young SE, Demmitt BA, Howrigan DP, McQueen MB (2015) Genome-wide association study of behavioral disinhibition in a selected adolescent sample. Behav Genet 45:375–381

    Article  PubMed  PubMed Central  Google Scholar 

  • Dick DM, Agrawal A, Keller MC, Adkins A, Aliev F, Monroe S, Sher KJ (2015) Candidate gene-environment interaction research: reflections and recommendations. Perspect Psychol Sci 10:37–59

    Article  PubMed  PubMed Central  Google Scholar 

  • Dudbridge F (2013) Power and predictive accuracy of polygenic risk scores. PLoS Genet 9:e1003348

    Article  PubMed  PubMed Central  Google Scholar 

  • Faraone SV, Perlis RH, Doyle AE, Smoller JW, Goralnick JJ, Holmgren MA, Sklar P (2005) Molecular genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry 57:1313–1323

    Article  PubMed  Google Scholar 

  • Flint J, Munafò MR (2007) The endophenotype concept in psychiatric genetics. Psychol Med 37:163–180

    Article  PubMed  Google Scholar 

  • Friedman NP, Haberstick BC, Willcutt EG, Miyake A, Young SE, Corley RP, Hewitt JK (2007) Greater attention problems during childhood predict poorer executive functioning in late adolescence. Psychol Sci 18:893–900

    Article  PubMed  Google Scholar 

  • Friedman NP, Miyake A, Corley RP, Young SE, Defries JC, Hewitt JK (2006) Not all executive functions are related to intelligence. Psychol Sci 17:172–179

    Article  PubMed  Google Scholar 

  • Friedman NP, Miyake A, Young SE, Defries JC, Corley RP, Hewitt JK (2008) Individual differences in executive function are almost entirely genetic in origin. J Exp Psychol Gen 137:201–225

    Article  PubMed  PubMed Central  Google Scholar 

  • Friedman NP, Miyake A, Robinson JL, Hewitt JK (2011) Developmental trajectories in toddler’s self-restraint predict individual differences in executive functions 14 years later: a behavioral genetic analysis. Dev Psychol 47:1410–1430

    Article  PubMed  PubMed Central  Google Scholar 

  • Friedman NP, Miyake A, Altamirano LJ, Corley RP, Young SE, Rhea SA, Hewitt JK (2016) Stability and change in executive function abilities from late adolescence to early adulthood: a longitudinal twin study. Dev Psychol 52:326–340

    Article  PubMed  Google Scholar 

  • Glahn DC, Bearden CE, Niendam TA, Escamilla MA (2004) The feasibility of neuropsychological endophenotypes in the search for genes associated with bipolar affective disorder. Bipolar Disord 6:171–182

    Article  PubMed  Google Scholar 

  • Gottesman II, Gould TD (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 160:636–645

    Article  PubMed  Google Scholar 

  • Hagenaars SP, Harris SE, Davies G, Hill WD, Liewald DCM, Ritchie SJ, Deary IJ (2016) Shared genetic aetiology between cognitive functions and physical and mental health in UK Biobank (N = 112151) and 24 GWAS consortia. Mol Psychiatry. doi:10.1038/mp.2015.225

    Google Scholar 

  • Hasler G, Drevets WC, Manji HK, Charney DS (2004) Discovering endophenotypes for major depression. Neuropsychopharmacology 29:1765–1781

    Article  PubMed  Google Scholar 

  • Herd SA, O’Reilly RC, Hazy TE, Chatham CH, Brant AM, Friedman NP (2014) A neural network model of individual differences in task switching abilities. Neuropsychologia 62:375–389

    Article  PubMed  Google Scholar 

  • Howie BN, Donnelly P, Marchini J (2009) A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 5:e1000529

    Article  PubMed  PubMed Central  Google Scholar 

  • Ibrahim-Verbaas CA, Bressler J, Debette S, Schuur M, Smith AV, Bis JC, Mosley TH (2016) GWAS for executive function and processing speed suggests involvement of the CADM2 gene. Mol Psychiatry 21:189–197

    Article  PubMed  Google Scholar 

  • Kendler KS, Neale MC, Kessler RC, Heath AC, Eaves LJ (1992) Major depression and generalized anxiety disorder: same genes, (partly) different environments? Arch Gen Psychiatry 49:716–722

    Article  PubMed  Google Scholar 

  • Kendler KS, Neale MC (2010) Endophentype: a conceptual analysis. Mol Psychiatry 15:789–797

    Article  PubMed  PubMed Central  Google Scholar 

  • Krapohl E, Euesden J, Zabaneh D, Pingault J-B, Rimfeld K, von Stumm S, Dale PS, Breen G, O’Reilly PF,  Plomin R (2016) Phenome-wide analysis of genome-wide polygenic scores. Mol Psychiatry 21:1188–1193

    Article  PubMed  Google Scholar 

  • Lencz T, Knowles E, Davies G, Guha S, Liewald DC, Starr JM, Malhotra AK (2014) Molecular genetic evidence for overlap between general cognitive ability and risk for schizophrenia: a report from the cognitive genomics consortium (COGENT). Mol Psychiatry 19:168–174

    Article  PubMed  Google Scholar 

  • McIntosh AM, Gow A, Luciano M, Davies G, Liewald DC, Harris SE, Deary IJ (2013) Polygenic risk for schizophrenia is associated with cognitive change between childhood and old age. Biol Psychiatry 73:938–943

    Article  PubMed  Google Scholar 

  • Miles JH (2011) Autism spectrum disorders: a genetics review. Genet Med 13:278–294

    Article  PubMed  Google Scholar 

  • Miyake A, Friedman NP, Emerson MJ, Witzki AH, Howerter A, Wager TD (2000) The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cogn Psychol 41:49–100

    Article  PubMed  Google Scholar 

  • Miyake A, Friedman NP (2012) The nature and organization of individual differences in executive functions: four general conclusions. Curr Dir Psychol Sci 21:8–14

    Article  PubMed  PubMed Central  Google Scholar 

  • Morrison AC, Bare LA, Chambless LE, Ellis SG, Malloy M, Kane JP, Boerwinkle E (2007) Prediction of coronary heart disease risk using a genetic risk score: the atherosclerosis risk in communities study. Am J Epidemiol 166:28–35

    Article  PubMed  Google Scholar 

  • Muthén LK, Muthén BO (1998-2012) Mplus User’s Guide. Seventh Edition. Los Angeles, CA: Muthén & Muthén

  • Neale BM, Medland SE, Ripke S, Asherson P, Franke B, Lesch KP, Nelson S (2010) Meta-analysis of genome-wide association studies of attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 49:884–897

    Article  PubMed  PubMed Central  Google Scholar 

  • Nyden A, Hagberg B, Gousse V, Rastam M (2011) A cognitive endophenotype of autism in families with multiple incidence. Res Autism Spectr Disord 5:191–200

    Article  Google Scholar 

  • Plomin R, Haworth CMA, Meaburn EL, Price TS, Davis OSP (2013) Common DNA markers can account for more than half of the genetic influence on cognitive abilities. Psychol Sci 24:562–568

    Article  PubMed  PubMed Central  Google Scholar 

  • Purcell S, Neale BM, Todd-brown K, Thomas L, Ferreira MAR, Bender D, Sham PC (2007) REPORT PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0

    Google Scholar 

  • Radloff LS (1977) The CES-D scale: a self-report depression scale for research in the general population. Appl Psychol Meas 1:385–401

    Article  Google Scholar 

  • Rhea SA, Gross AA, Haberstick BC, Corley RP (2013) Colorado twin registry: an update. Twin Res Hum Genet 16:351–357

    Article  PubMed  Google Scholar 

  • Rietveld CA, Esko T, Davies G, Pers TH, Turley P, Benyamin B, Philipp D (2014) Common genetic variants associated with cognitive performance identified using the proxy-phenotype method. Proc Natl Acad Sci 111:13790–13794

    Article  PubMed  PubMed Central  Google Scholar 

  • Ripke S, Neale BM, Corvin A, Walters JTR, Farh KH, Holmans PA, O’Donovan MC (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511:421–427

    Article  PubMed Central  Google Scholar 

  • Ripke S, Wray NR, Lewis CM, Hamilton SP, Weissman MM, Breen G, Major Depressive Disorder Working Group of the Psychiatric GWAS Consortium (2013) A mega-analysis of genome-wide association studies for major depressive disorder. Mol Psychiatry 18:497–511

  • Robins LN, Cottler LB, Bucholz KK, Compton WM, North CS, Rourke KM (2000) Diagnostic interview schedule for the DSM-IV (DIS-IV). Washington University School of Medicine, St Louis

    Google Scholar 

  • Rose EJ, Donohoe G (2013) Brain vs behavior: an effect size comparison of neuroimaging and cognitive studies of genetic risk for schizophrenia. Schizophr Bull 39:518–526

    Article  PubMed  Google Scholar 

  • Rosenthal M, Wallace GL, Lawson R, Wills MC, Dixon E, Yerys BE, Kenworthy L (2013) Impairments in real-world executive function increase from childhood to adolescence in autism spectrum disorders. Neuropsychology 27:13–18

    Article  PubMed  PubMed Central  Google Scholar 

  • Shaffer D, Fisher P, Lucas CP, Dulcan MK, Schwab-Stone ME (2000) NIMH diagnostic interview schedule for children version IV (NIMH DISC-IV): description, differences from previous versions, and reliability of some common diagnoses. J Am Acad Child Adolesc Psychiatry 39:28–38

    Article  PubMed  Google Scholar 

  • Shih RA, Belmonte PL, Zandi PP (2004) A review of the evidence from family, twin and adoption studies for a genetic contribution to adult psychiatric disorders. Int Rev Psychiatry 16:260–283

    Article  PubMed  Google Scholar 

  • Sklar P, Ripke S, Scott LJ, Andreassen OA, Chichon S, Craddock N, Corvin A (2011) Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat Genet 43:977–983

    Article  PubMed Central  Google Scholar 

  • Smoller JW, Finn CT (2003) Family, twin, and adoption studies of bipolar disorder. Am J Med Genet 123C:48–58

    Article  PubMed  Google Scholar 

  • Snitz BE, MacDonald III AW, Carter SC (2006) Cognitive deficits in unaffected first-degree relatives of schizophrenia patients: a meta-analytic review of putative endophenotypes. Schizophr Bull 32:179–194

    Article  PubMed  PubMed Central  Google Scholar 

  • Snyder HR (2013) Major depressive disorder is associated with broad impairments on neuropsychological measures of executive function: a meta-analysis and review. Psychol Bull 139:81–132

    Article  PubMed  Google Scholar 

  • Snyder HR, Miyake A, Hankin BL (2015) Advancing understanding of executive function impairments and psychopathology: bridging the gap between clinical and cognitive approaches. Front Psychol 6:328

    Article  PubMed  PubMed Central  Google Scholar 

  • Sullivan PF (2010) The psychiatric GWAS consortium: big science comes to psychiatry. Neuron 68:182–186

    Article  PubMed  PubMed Central  Google Scholar 

  • Sullivan PF, Kendler KS, Neale MC (2003) Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 60:1187–1192

    Article  PubMed  Google Scholar 

  • Sullivan PF, Neale MC, Kendler KS (2000) Genetic epidemiology of major depression: review and meta-analysis. Am J Psychiatry 157:1552–1562

    Article  PubMed  Google Scholar 

  • The 1000 Genomes Project Consortium (2010) A map of human genome variation from population-scale sequencing. Nature 467:1061–1073

    Article  PubMed Central  Google Scholar 

  • The International HapMap Consortium (2003) The International HapMap project. Nature 426:789–796

    Article  Google Scholar 

  • The Psychiatric GWAS Consortium Steering Committee (2009) A framework for interpreting genome-wide association studies of psychiatric disorders. Mol Psychiatry 14:10–17

    Article  Google Scholar 

  • Thorisson GA, Smith AV, Krishnan L, Stein LD (2005) The International HapMap Project Web site. Genome Res 15(11):1592–1593

    Article  PubMed  PubMed Central  Google Scholar 

  • Tracy RP (2008) ‘Deep phenotyping': characterizing populations in the era of genomics and systems biology. Curr Opin Lipidol 19:151–157

    Article  PubMed  Google Scholar 

  • Walters JTR, Owen MJ (2007) Endophenotypes in psychiatric genetics. Mol Psychiatry 12:886–890

    Article  PubMed  Google Scholar 

  • Wechsler D (1997) Wechsler adult intelligence scale, 3rd edn. Psychol Corp, San Antonio

    Google Scholar 

  • Wechsler D (1999) Wechsler abbreviated scale of intelligence (WASI). Psychological Corporation, San Antonio

    Google Scholar 

  • Willcutt EG, Doyle AE, Nigg JT, Faraone SV, Pennington BF (2005) Validity of the executive function theory of attention-deficit/hyperactivity disorder: a meta-analytic review. Biol Psychiatry 57:1336–1346

    Article  PubMed  Google Scholar 

URLs

Download references

Funding

This research was supported by National Institute of Health Grants MH063207, MH001865, MH016880, MH079485, DA011015, DA035804, AG046938, and HD010333.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chelsie E. Benca.

Ethics declarations

Conflict of interest

Chelsie E. Benca, Jaime L. Derringer, Robin P. Corley, Susan E. Young, Matthew C. Keller, John K. Hewitt, and Naomi P. Friedman declares that they have no conflict of interest.

Human and Animal Rights

All procedures performed in studies involving human participants were in accordance with the ethical standards of the University of Colorado Institutional Review Board and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Parental permission and informed consent or assent were obtained from each subject at each assessment.

Additional information

Edited by Valerie Knopik.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 137 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benca, C.E., Derringer, J.L., Corley, R.P. et al. Predicting Cognitive Executive Functioning with Polygenic Risk Scores for Psychiatric Disorders. Behav Genet 47, 11–24 (2017). https://doi.org/10.1007/s10519-016-9814-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10519-016-9814-2

Keywords

Navigation