Skip to main content

Advertisement

Log in

Mixed-Effects Variance Components Models for Biometric Family Analyses

  • Published:
Behavior Genetics Aims and scope Submit manuscript

Recent substantive research on biometric analyses of twin and family data has used both a biometric path analysis model (PAM) and a biometric variance components model (VCM). Methodological research on these same topics have suggested benefits of using linear structural equation model algorithms (SEMA) as well as mixed effect multilevel algorithms (MEMA). To better understand the potential similarities and differences among these approaches we first highlight the algebraic equivalence between the standard biometric PAM and the corresponding biometric VCM models for family data. Second, we demonstrate how several SEMA programs based on either the PAM or VCM approach produce equivalent estimates for all phenotypic and biometric parameters. Third, we show how the biometric VCM approach (but not the PAM approach) can be easily programmed using current MEMA programs (e.g., SAS PROC MIXED). We then expand the scope of these different approaches to include measured covariates, observed variable interactions and multiple relatives within each family. MEMA software is compared to SEMA software for programming complex models, including the flexibility of data input, treatment of missing data, inclusion of covariates, and ease of accommodating varying numbers of observations (per family or individual).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J. L. Arbuckle W. Wothke (1999) Amos 4.0 User's Guide Smallwaters Corp Chicago, IL

    Google Scholar 

  • R. D. Bock R. E. Bargmann (1966) ArticleTitleAnalysis of covariance structures Psychometrika 31 IssueID4 507–534 Occurrence Handle5232439

    PubMed  Google Scholar 

  • D. Boomsma P. C. M. Molenaar (1987) ArticleTitleConstrained maximum likelihood analysis of familial resemblance of twins and their families Acta Genet. Med. Gemelloi 36 29–39

    Google Scholar 

  • A. S. Bryk S. W. Raudenbush (1992) Hierarchical Linear Models: Applications and Data Analysis Methods. SAGE Newbury Park, CA

    Google Scholar 

  • R. B. Cattell (1953) ArticleTitleResearch designs in psychological genetics, with special reference to the multiple variance method Am. J. Human Genet. 5 76–93

    Google Scholar 

  • R. B. Cattell (1960) ArticleTitleThe multiple abstract variance analysis equations and solutions: for nature–nurture research on continuous variables Psychol. Rev. 67 353–337 Occurrence Handle13691636

    PubMed  Google Scholar 

  • R. B. Cattell (1963) ArticleTitleThe interaction of hereditary and environmental influences Br. J. Stat. Psychol. 16 191–210

    Google Scholar 

  • R. B. Cattell (1982) The Inheritance of Personality and Ability: Research Methods and Findings Academic Press New York

    Google Scholar 

  • L. J. Eaves J. S. Gale (1974) ArticleTitleA method for analyzing the genetic basis of covariation Behav. Genet. 4 253–267 Occurrence Handle10.1007/BF01074158 Occurrence Handle4471972

    Article  PubMed  Google Scholar 

  • L. J. Eaves K. A. Last P. A. Young N. G. Martin (1968) ArticleTitleModel fitting approaches to the analysis of human behavior Heredity 41 249–320

    Google Scholar 

  • L. Eaves A. Erkanli (2003) ArticleTitleMarkov Monte Carlo approaches to analysis of genetic and environmental components of human development change and G × E interaction Behav. Genet. 33 IssueID3 279–299 Occurrence Handle10.1023/A:1023446524917 Occurrence Handle12837018

    Article  PubMed  Google Scholar 

  • R. A. Fisher (1918) ArticleTitleThe correlations between relatives on the supposition of Mendelian inheritance Trans. Roy. Soc. Edinburgh 52 399–433

    Google Scholar 

  • R. A. Fisher (1925) ArticleTitleThe resemblance between twins: a statistical examination of Lauterbach's measurements Genetics 10 569–579

    Google Scholar 

  • H. Goldstein (1995) Multilevel Statistical Models, 2nd edn Oxford Press New York

    Google Scholar 

  • G. Guo J. Wang (2002) ArticleTitleThe mixed or multilevel model for behavior genetic analysis Behav. Genet. 32 IssueID1 37–49 Occurrence Handle10.1023/A:1014455812027 Occurrence Handle11958541

    Article  PubMed  Google Scholar 

  • N. D. Henderson (1975) Gene–evniroment interaction in human behavioral development K. W. Schaie V. E. Anderson G. E. McClearn J. Money (Eds) Developmental human behavior genetics: Nature-nurture redefined Lexington Books Lexington, MA 5–24

    Google Scholar 

  • J. Jinks D. W. Fulker (1970) ArticleTitleA comparison of the biometrical genetics, MAVA, and classical approaches to the analysis of human behavior Psychol. Bull. 73 311–349 Occurrence Handle5528333

    PubMed  Google Scholar 

  • K. G. Jöreskog D. Sörbom (1999) LISREL 8.30: LISREL 8: Structural Equation Modeling with the SIMPLIS Command Language. Scientific Software International Hillsdale, NJ

    Google Scholar 

  • C. C. Li (1968) ArticleTitleFisher, Wright, and path coefficients Biometrics 24 471–483 Occurrence Handle5686301

    PubMed  Google Scholar 

  • J. C. Loehlin (1965) ArticleTitleSome methodological problems in Cattell's multiple abstract variance analysis Psychol. Rev. 72 156–161 Occurrence Handle14282673

    PubMed  Google Scholar 

  • J. C. Loehlin (1978) ArticleTitleHeredity-environment analyses of Jenck's IQ correlations Behav. Genet. 8 415–436 Occurrence Handle10.1007/BF01067938 Occurrence Handle570034

    Article  PubMed  Google Scholar 

  • J. C. Loehlin (1979) Combining data from different groups in human behavior genetics J. R. Royce (Eds) Theoretical Advances in Behavior Genetics Sijthoff and Noordhoff Leiden, The Nethderlands 303–334

    Google Scholar 

  • H. M. Maes M. C. Neale L. J. Eaves (1997) ArticleTitleGenetic and environmental factors in relative body weight and human adiposity Behav. Genet. 27 325–351 Occurrence Handle10.1023/A:1025635913927 Occurrence Handle9519560

    Article  PubMed  Google Scholar 

  • N. G. Martin L. J. Eaves (1977) ArticleTitleThe genetical analysis of covariance structure Heredity 38 79–95 Occurrence Handle268313

    PubMed  Google Scholar 

  • N. G. Martin L. J. Eaves A. Heath (1987) ArticleTitleProspects for detecting genotype × environment interactions in twins with breast cancer Acta Genet. Med. Gemelloi. 36 5–20

    Google Scholar 

  • K. Mather J. L. Jinks (1977) Introduction to Behavioral Genetics. Cornell University. Press Ithaca, NY

    Google Scholar 

  • J. J. McArdle (1986) ArticleTitleLatent variable growth within behavior genetic models Behav. Genet. 16 IssueID1 163–200 Occurrence Handle10.1007/BF01065485 Occurrence Handle3707483

    Article  PubMed  Google Scholar 

  • J. J. McArdle (1996) ArticleTitleA workshop on contemporary behavioral genetic models and methods Contemp. Psychol. 41 IssueID9 886–887

    Google Scholar 

  • J. J. McArdle J. Connell H. H. Goldsmith (1980) ArticleTitleLatent variable approaches to measurement preliminary results from the study of behavioral style structure, longitudinal stability, and genetic influences Behav. Genet. 10 609

    Google Scholar 

  • J. J. McArdle E. Ferrer-Caja F. Hamagami R. W. Woodcock (2002) ArticleTitleComparative longitudinal multilevel structural analyses of the growth and decline of multiple intellectual abilities over the life-span Develop. Psychol. 38 IssueID1 115–142 Occurrence Handle10.1037//0012-1649.38.1.115

    Article  Google Scholar 

  • J. J. McArdle H. H. Goldsmith (1990) ArticleTitleSome alternative structural equation models for multivariate biometric analyses Behav. Genet. 20 IssueID5 569–608 Occurrence Handle10.1007/BF01065873 Occurrence Handle2288547

    Article  PubMed  Google Scholar 

  • J. J. McArdle F. Hamagami (1996) Multilevel models from a multiple group structural equation perspective G. Marcoulides R. Schumacker (Eds) Advanced Structural Equation Modeling Techniques Erlbaum Hillsdale, N. J. 89–124

    Google Scholar 

  • J. J. McArdle F. Hamagami (2003) ArticleTitleStructural equation models for evaluating dynamic concepts within longitudinal twin analyses Behav. Genet. 33 IssueID3 137–159 Occurrence Handle10.1023/A:1022553901851 Occurrence Handle14574148

    Article  PubMed  Google Scholar 

  • J. J. McArdle C. A. Prescott (1996) Contemporary models for the biometric genetic analysis of intellectual abilities D. P. Flanagan J. L. Genshaft P. L. Harrison (Eds) Contemporary Intellectual Assessment: Theories, Tests and Issues Guilford Press New York 403–436

    Google Scholar 

  • J.J. McArdle C.A. Prescott F. Hamagami J.L. Horn (1998) ArticleTitleA contemporary method for developmental-genetic analyses of age changes in intellectual abilities Develop. Neuropsychol. 14 IssueID1 69–114

    Google Scholar 

  • L. K. Muthén B. O. Muthén (2004) Mplus VERSION User's Guide Muthén and Muthén Los Angeles CA

    Google Scholar 

  • Neale, M. C., Boker, S. M., Xie, G., and Maes, H. H. (2002). Mx: Statistical Modeling, 5th edn. Department of Psychiatry, Virginia Commonwealth University, P.O. Box 980126, Richmond, VA 23298.

  • M. C. Neale L. Cardon (1992) Methodology for Genetic Studies of Twins and Families. Kluwer Academic Dordrecht, The Netherlands

    Google Scholar 

  • J. C. Pinherio D. M. Bates (2000) Mixed-Effects Models in S and S-PLUS Springer New York

    Google Scholar 

  • D. A. Powers Y. Xie (2000) Statistical Methods for Categorical Data Analysis Academic Press New York

    Google Scholar 

  • C. A. Prescott (2004) ArticleTitleUsing the Mplus computer program to estimate models for continuous and categorical data from twins Behav. Genet. 34 IssueID1 17–40 Occurrence Handle10.1023/B:BEGE.0000009474.97649.2f Occurrence Handle14739694

    Article  PubMed  Google Scholar 

  • S. Purcell P. Sham (2002) ArticleTitleVariance components models for gene-environment interaction in twin analysis Twin Res. 5 IssueID6 554–571 Occurrence Handle10.1375/136905202762342026 Occurrence Handle12573187

    Article  PubMed  Google Scholar 

  • SAS Institute (1999) SAS/STAT Software, Version 8 SAS Institute Cary NC

    Google Scholar 

  • Skrondal, A., and Rabe-Hesketh, S. (2004). Generalized Latent Variable Modeling: Multilevel, Longitudinal and Structural Equation Models. Chapman and Hall/CRC.

  • S. Wright (1918) ArticleTitleOn the nature of size factors Genetics 5 367–374

    Google Scholar 

  • S. Wright (1921) ArticleTitleCorrelation and causation J. Agricult. Res. 20 557–585

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McArdle, J.J., Prescott, C.A. Mixed-Effects Variance Components Models for Biometric Family Analyses. Behav Genet 35, 631–652 (2005). https://doi.org/10.1007/s10519-005-2868-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10519-005-2868-1

Keywords

Navigation