Skip to main content
Log in

Heart Rate Variability and Skin Conductance During Repetitive TMS Course in Children with Autism

  • Published:
Applied Psychophysiology and Biofeedback Aims and scope Submit manuscript

Abstract

Autism spectrum disorder (ASD) is a developmental disorder marked by difficulty in social interactions and communication. ASD also often present symptoms of autonomic nervous system (ANS) functioning abnormalities. In individuals with autism the sympathetic branch of the ANS presents an over-activation on a background of the parasympathetic activity deficits, creating an autonomic imbalance, evidenced by a faster heart rate with little variation and increased tonic electrodermal activity. The objective of this study was to explore the effect of 12 sessions of 0.5 Hz repetitive transcranial magnetic stimulation (rTMS) over dorsolateral prefrontal cortex (DLPFC) on autonomic activity in children with ASD. Electrocardiogram and skin conductance level (SCL) were recorded and analyzed during each session of rTMS. The measures of interest were time domain (i.e., R–R intervals, standard deviation of cardiac intervals, NN50-cardio-intervals >50 ms different from preceding interval) and frequency domain heart rate variability (HRV) indices [i.e., power of high frequency (HF) and low frequency (LF) components of HRV spectrum, LF/HF ratio]. Based on our prior pilot studies it was proposed that the course of 12 weekly inhibitory low-frequency rTMS bilaterally applied to the DLPFC will improve autonomic balance probably through improved frontal inhibition of the ANS activity, and will be manifested in an increased length of cardiointervals and their variability, and in higher frequency-domain HRV in a form of increased HF power, decreased LF power, resulting in decreased LF/HF ratio, and in decreased SCL. Our post-12 TMS results showed significant increases in cardiac intervals variability measures and decrease of tonic SCL indicative of increased cardiac vagal control and reduced sympathetic arousal. Behavioral evaluations showed decreased irritability, hyperactivity, stereotype behavior and compulsive behavior ratings that correlated with several autonomic variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Althaus, M., Mulder, L. J., Mulder, G., Aarnoudse, C., & Minderaa, R. (1999). Cardiac adaptivity to attention-demanding tasks in children with a pervasive developmental disorder not otherwise specified (PDD-NOS). Biological Psychiatry, 46(6), 799–809.

    Article  PubMed  Google Scholar 

  • Althaus, M., Van Roon, A. M., Mulder, L. J., Mulder, G., Aarnoudse, C., & Minderaa, R. (2004). Autonomic response patterns observed during the performance of an attention-demanding task in two groups of children with autistic-type difficulties in social adjustment. Psychophysiology, 41(6), 893–904.

    Article  PubMed  Google Scholar 

  • Aman, M. G. (2004). Management of hyperactivity and other acting out problems in patients with autism spectrum disorder. Seminars in Pediatric Neurology, 11(3), 225–228.

    Article  PubMed  Google Scholar 

  • Aman, M. G., & Singh, N. N. (1994). Aberrant behavior checklist-community. Supplementary manual. East Aurora, NY: Slosson Educational.

    Google Scholar 

  • Amat, J., Baratta, M. V., Paul, E., Bland, S. T., Watkins, L., & Maier, L. F. (2005). Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus. Nature Neuroscience, 8(3), 365–371.

    Article  PubMed  Google Scholar 

  • American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (4th ed., text revision). Washington, DC: American Psychiatric Association.

  • Angus, Z. (1970). Autonomic and cognitive functions in childhood psychosis. Bulletin of British Psychological Society, 23, 228–229.

    Google Scholar 

  • Barry, R. J., & James, A. L. (1988). Coding of stimulus parameters in autistic, retarded, and normal children: Evidence for a two-factor theory of autism. International Journal of Psychophysiology, 6(2), 139–149.

    Article  PubMed  Google Scholar 

  • Baruth, J. M., Casanova, M. F., El-Baz, A., Horrell, T., Mathai, G., & Sears, L. (2010). Low-frequency repetitive transcranial magnetic stimulation (rTMS) modulates evoked-gamma frequency oscillations in autism spectrum disorder (ASD). Journal of Neurotherapy, 14(3), 179–194.

    Article  PubMed Central  PubMed  Google Scholar 

  • Baruth, J., Williams, E., Sokhadze, E., El-Baz, A., Sears, L., & Casanova, M. F. (2011). Repetitive transcranial stimulation (rTMS) improves electroencephalographic and behavioral outcome measures in autism spectrum disorders (ASD). Autism Science Digest, 1(1), 52–57.

    Google Scholar 

  • Benarroch, E. E. (1997). The central autonomic network. In P. A. Low (Ed.), Clinical autonomic disorders (2nd ed., pp. 17–23). Philadelphia: Lippincott-Raven.

    Google Scholar 

  • Ben-Shachar, D., Belmaker, R. H., Grisaru, N., & Klein, E. (1997). Transcranial magnetic stimulation induces in brain monoamines. Journal of Neural Transmission, 104(2–3), 191–197.

    Article  PubMed  Google Scholar 

  • Berntson, G. G., Bigger, J. T., Eckberg, D. L., Grossman, P., Kaufmann, P. G., Malik, M., et al. (1997). Heart rate variability: Origins, methods and interpretive caveates. Psychophysiology, 34(6), 623–648.

    Article  PubMed  Google Scholar 

  • Bodfish, J. W., Symons, F. J., & Lewis, J. (1999). Repetitive behavior scale. Western Carolina Center research reports. Morgantown, NC: Western Carolina Center.

  • Bodfish, J. W., Symons, F. S., Parker, D. E., & Lewis, M. H. (2000). Varieties of repetitive behavior in autism: Comparisons to mental retardation. Journal of Autism and Developmental Disorders, 30(3), 237–243.

    Article  PubMed  Google Scholar 

  • Boucsein, W. (2012). Electrodermal activity (2nd ed.). New York: Springer.

    Book  Google Scholar 

  • Casanova, M. F. (2006). Neuropathological and genetic findings in autism: The significance of a putative minicolumnopathy. Neuroscientist, 12(5), 435–441.

    Article  PubMed  Google Scholar 

  • Casanova, M. F., Baruth, J., El-Baz, A., Tasman, A., Sears, L., & Sokhadze, E. (2012). Repetitive transcranial magnetic stimulation (rTMS) modulates event-related potential (ERP) indices of attention in autism. Translational Neuroscience, 3(2), 170–180.

    Article  PubMed Central  PubMed  Google Scholar 

  • Casanova, M. F., Buxhoeveden, D. P., & Brown, C. (2002). Clinical and macroscopic correlates of minicolumnar pathology in autism. Journal of Child Neurology, 17(9), 692–695.

    Article  PubMed  Google Scholar 

  • Casanova, M. F., Hensley, M. K., Sokhadze, E., El-Baz, A., Wang, Y., & Sears, L. (2014). Effects of rTMS on autonomic functions in autism spectrum disorder. Frontiers in Behavioral Neurosciences, 8(851), 1–11. doi:10.389/fnsys.2014.00134.

    Google Scholar 

  • Casanova, M. F., Sokhadze, E., Opris, I., Wang, Y., & Li, X. (2015). Autism spectrum disorders: Linking neuropathological findings to treatment with transcranial magnetic stimulation. Acta Pediatrica, 104(4), 346–355.

    Article  Google Scholar 

  • Casanova, M. F., van Kooten, I. A., Switala, A. E., van Engeland, H., Heinsen, H., Steinbusch, H. W., et al. (2006). Abnormalities of cortical minicolumnar organization in the prefrontal lobes of autistic patients. Clinical Neuroscience Research, 6, 127–133.

    Article  Google Scholar 

  • Chang, M. C., Parham, L. D., Blanche, E. I., Schell, A., Chou, C. P., Dawson, M., & Clark, F. (2012). Autonomic and behavioral responses of children with autism to auditory stimuli. American Journal of Occupational Therapy, 66(5), 67–76.

    Article  Google Scholar 

  • Cohen, N., Benjamin, J., Geva, A. B., Matar, M. A., Kaplan, Z., & Kotler, M. (2000). Autonomic dysregulation in panic disorder and in post-traumatic stress disorder: Application of power spectrum analysis of heart rate variability at rest and in response to recollection of trauma or panic attack. Psychiatry Research, 96(1), 1–13.

    Article  PubMed  Google Scholar 

  • Corona, R., Dissanayake, C., Arbelle, S., Wellington, P., & Sigman, M. (1998). Is affect aversive to young children with autism? Behavioral and cardiac responses to experimenter distress. Child Development, 69(6), 1494–1502.

    Article  PubMed  Google Scholar 

  • Czeh, B., Welt, T., Fischer, A. K., Erhardt, A., Schmitt, W., Muler, M. B., et al. (2002). Chronic psychosocial stress and concomitant repetitive transcranial magnetic stimulation: Effects on stress hormone levels and adult hippocampal neurogenesis. Biological Psychiatry, 52(11), 1057–1065.

    Article  PubMed  Google Scholar 

  • Damasio, A. R. (1994). Descartes error: Emotion, reason, and the human brain. New York: Avon Books.

    Google Scholar 

  • Davidson, R. J. (2000). The functional neuroanatomy of affective style. In R. D. Lane & L. Nadel (Eds.), Cognitive neuroscience of emotion (pp. 106–128). New York: Oxford University Press.

    Google Scholar 

  • De Bruin, E. L., Ferdinand, R. F., Meester, S., de Nijs, P. F., & Verheij, F. (2007). High rates of psychiatric co-morbidity in PDD-NOS. Journal of Autism and Developmental Disorders, 37(5), 877–886.

    Article  PubMed  Google Scholar 

  • Dombroski, B., Kaplan, M., Kotsamanidis-Burg, B., Edelson, S. M., Hensley, M. K., Sokhadze, E. M., et al. (2013). Effects of ambient prism lenses and visual-motor training on heart rate variability and behavioral outcomes in autism. In K. Siri & T. Lyons (Eds.), Cutting-edge therapies for autism (3rd ed., pp. 138–150). New York, NY: Skyhorse Publishing.

    Google Scholar 

  • Filippi, M. M., Oliveri, M., Vernieri, F., Pasqualetti, P., & Rossini, P. M. (2000). Are autonomic signals influencing cortico-spinal motor excitability? A study with transcranial magnetic stimulation. Brain Research, 881(2), 159–164.

    Article  PubMed  Google Scholar 

  • Fitzgerald, P. B., Hoy, K., Gunewardene, R., Slack, C., Ibrahim, S., Bailey, M., et al. (2011). A randomized trial of unilateral and bilateral prefrontal cortex transcranial magnetic stimulation in treatment-resistant major depression. Psychological Medicine, 41(6), 1187–1196.

    Article  PubMed  Google Scholar 

  • Friedman, B. H. (2007). An autonomic flexibility–neurovisceral integration model of anxiety and cardiac vagal tone. Biological Psychology, 74(2), 185–199.

    Article  PubMed  Google Scholar 

  • Friedman, B. H., & Thayer, J. F. (1998). Anxiety and autonomic flexibility: A cardiovascular approach. Biological Psychology, 49(3), 303–323.

    Article  PubMed  Google Scholar 

  • George, M. S., Lisanby, S. H., & Sackeim, H. A. (1999). Transcranial magnetic stimulation: Applications in neuropsychiatry. Archives of General Psychiatry, 56(4), 300–311.

    Article  PubMed  Google Scholar 

  • Hedges, D. W., Salyer, D. L., Higginbotham, B. J., Lund, T. D., Hellewell, J. L., Ferguson, D., et al. (2002). Transcranial magnetic stimulation (TMS) effects on testosterone, prolactin, and corticosterone in adult male rats. Biological Psychiatry, 51(5), 417–421.

    Article  PubMed  Google Scholar 

  • Hensley, M., El-Baz, A., Casanova, M. F., & Sokhadze, E. (2013). Heart rate variability and cardiac autonomic measures changes during rTMS course in autism. Applied Psychophysiology and Biofeedback, 38(3), 238.

    Google Scholar 

  • Hensley, M., El-Baz, A., Sokhadze, G., Sears, L., Casanova, M. F., & Sokhadze, E. M. (2012). TMS effects on cardiac autonomic control in children with autism. Psychophysiology, 49, S40.

    Google Scholar 

  • Hirstein, W., Iversen, P., & Ramachandran, V. S. (2001). Autonomic responses of autistic children to people and objects. Proceedings of the Royal Society of London B, Biological Sciences, 268(1479), 1883–1888.

    Article  Google Scholar 

  • Holsboer, F. (2000). The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology, 23(5), 477–501.

    Article  PubMed  Google Scholar 

  • Hutt, C., Forrest, S. J., & Richer, J. (1975). Cardiac arrhythmia and behavior in autistic children. Acta Psychiatrica Scandinavica, 51(5), 361–372.

    Article  PubMed  Google Scholar 

  • Jenkins, J., Shajahan, P. M., Lappin, J. M., & Ebmeier, K. P. (2002). Right and left prefrontal transcranial magnetic stimulation at 1 Hz does not affect mood in healthy volunteers. BMC Psychiatry, 2, 1–5.

    Article  PubMed Central  PubMed  Google Scholar 

  • Julu, P. O., Kerr, A. M., Apartipoulos, F., Al-Rawas, S., Engerstrom, I. W., Jamal, G. A., & Hansen, S. (2001). Characterisation of breathing and associated central autonomic dysfunction in the Rett disorder. Archives of Disease in Childhood, 85(1), 29–37.

    Article  PubMed Central  PubMed  Google Scholar 

  • Keck, M. E., Engelmann, M., Muller, M. B., Henniger, M. S., Hermann, B., Rupprecht, R., et al. (2000). Repetitive transcranial magnetic stimulation induces active coping strategies and attenuates the neuroendocrine stress response in rats. Journal of Psychiatric Research, 34(4–5), 265–276.

    Article  PubMed  Google Scholar 

  • Khedr, E. M., Rothwell, J. C., Ahmed, M. A., & El-Atar, A. (2008). Effect of daily repetitive transcranial magnetic stimulation for treatment of tinnitus: Comparison of different stimulus frequencies. Journal of Neurology, Neurosurgery and Psychiatry, 79(2), 212–215.

    Article  PubMed  Google Scholar 

  • Kleiger, R. E., Stein, P. K., & Bigger, J. T. (2005). Heart rate Variability: Measurement and clinical utility. Annals of Noninvasive Electrocardiology, 10(1), 88–101.

    Article  PubMed  Google Scholar 

  • Klusek, J., Roberts, J., & Losh, M. (2015). Cardiac autonomic regulation in autism and Fragile X syndrome: A review. Psychological Bulletin, 141(1), 141–175.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kobayashi, M., & Pascual-Leone, A. (2003). Transcaranial magnetic stimulation in neurology. Lancet Neurology, 2(3), 145–156.

    Article  PubMed  Google Scholar 

  • Kushki, A., Drumm, E., Pla Mobarak, M., Tanel, N., Dupuis, A., Chau, T., et al. (2013). Investigating the autonomic nervous system response to anxiety in children with autism spectrum disorders. PLoS One, 8(4), e59730. doi:10.1371/journal.pone.0059730.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lam, K. S., & Aman, M. G. (2007). The repetitive behavior scale revised: Independent validation in individuals with autism spectrum disorders. Journal of Autism and Developmental Disorders, 37(5), 855–866.

    Article  PubMed  Google Scholar 

  • Lane, R. D. (2008). Neural substrates of implicit and explicit emotional processes: A unifying framework for psychosomatic medicine. Psychosomatic Medicine, 70, 213–230.

    Article  Google Scholar 

  • Lane, R. D., McRae, K., Reiman, E. M., Ahern, G. L., & Thayer, J. F. (2007). Neural correlates of vagal tone during emotion. Psychosomatic Medicine, 69, A-8.

    Google Scholar 

  • Le Couteur, A., Lord, C., & Rutter, M. (2003). The autism diagnostic interview-revised (ADI-R). Los Angeles, CA: Western Psychological Services.

    Google Scholar 

  • Levy, M. N. (1990). Autonomic interactions in cardiac control. Annals of the New York Academy of Sciences, 601, 209–221.

    Article  PubMed  Google Scholar 

  • Loveland, K. A., Bachevalier, J., Pearson, D. A., & Lane, D. M. (2008). Fronto-limbic functioning in children and adolescents with and without autism. Neuropsychologia, 46(1), 49–62.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lydon, S., Healy, O., Reed, P., Mulhern, T., Hughes, B. M., & Goodwin, M. S. (2014). A systematic review of physiological reactivity to stimuli in autism. Developmental Neurorehabilitation. doi:10.3109/17518423.2014.971975.

    Google Scholar 

  • Malliani, A., Pagani, M., & Lombardi, F. (1994). Physiology and clinical implications of variability of cardiovascular parameters with focus on heart rate and blood pressure. The American Journal of Cardiology, 73(10), 3C–9C.

    Article  PubMed  Google Scholar 

  • Mayberg, H. S. (2003). Modulating dysfunctional limbic-cortical circuits in depression: Towards development of brain-based algorithms for diagnosis and optimized treatment. British Medical Bulletin, 65, 193–207.

    Article  PubMed  Google Scholar 

  • McPheeters, M. L., Davis, A., Nayarre, J. R., & Scott, T. A. (2011). Family report of ASD concomitant with depression or anxiety among US children. Journal of Autism and Developmental Disorders, 41(5), 646–653.

    Article  PubMed  Google Scholar 

  • Mezzacappa, E., Kindlon, D., Saul, J. P., & Earls, F. (1998). Executive and motivational control of performance task behavior, and autonomic heart-rate regulation in children: Physiological validation of two-factor solution inhibitory control. Journal of Child Psychology and Psychiatry and Allied Disciplines, 39(4), 525–531.

    Article  Google Scholar 

  • Ming, X., Bain, J. M., Smith, D., Brimacombe, M., Gold von-Simson, G., & Axelrod, F. B. (2011). Assessing autonomic dysfunction symptoms in children: A pilot study. Journal of Child Neurology, 26(4), 420–427.

    Article  PubMed  Google Scholar 

  • Ming, X., Julu, P. O., Brimacombe, M., Connor, S., & Daniels, M. L. (2005). Reduced cardiac parasympathetic activity in children with autism. Brain and Development, 27(7), 509–516.

    Article  PubMed  Google Scholar 

  • Movius, H. L., & Allen, J. J. (2005). Cardiac vagal tone, defensiveness, and motivational style. Biological Psychology, 68(2), 147–162.

    Article  PubMed  Google Scholar 

  • Pagani, M., Lombardi, F., Guzzetti, S., Rimoldi, O., Furlan, R., Pizzinelli, P., et al. (1986). lllPower spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circulation Research, 59(2), 178–193.

    Article  PubMed  Google Scholar 

  • Palkovitz, R. J., & Wiesenfeld, A. R. (1980). Differential autonomic responses of autistic and normal children. Journal of Autism and Developmental Disorders, 10(3), 347–360.

    Article  PubMed  Google Scholar 

  • Pascual-Leone, A., Walsh, V., & Rothwell, J. (2000). Transcranial magnetic stimulation in cognitive neuroscience—Virtual lesion, chronometry, and functional connectivity. Current Opinion in Neurobiology, 10(2), 232–237.

    Article  PubMed  Google Scholar 

  • Patriquin, M. A., Lorenzi, J., & Scarpa, A. (2013a). Relationship between respiratory sinus arrhythmia, heart period, and caregiver-reported language and cognitive delays in children with autism spectrum disorders. Applied Psychophysiology and Biofeedback, 38(3), 203–207.

    Article  PubMed  Google Scholar 

  • Patriquin, M. A., Scarpa, A., Friedman, B. H., & Porges, S. W. (2013b). Respiratory sinus arrhythmia: A marker for positive social functioning and receptive language skills in children with autism spectrum disorders. Developmental Psychobiology, 55(2), 101–112.

    Article  PubMed  Google Scholar 

  • Porges, S. W. (2001). The polyvagal theory: Phylogenetic substrates of a social nervous system. International Journal of Psychophysiology, 42(2), 123–146.

    Article  PubMed  Google Scholar 

  • Porges, S. W. (2003). The polyvagal theory: Phylogenetic contributions to social behavior. Physiology & Behavior, 79(3), 503–513.

    Article  Google Scholar 

  • Ridding, M. C., & Rothwell, J. C. (2007). Is there a future for therapeutic use of transcranial magnetic stimulation? Nature Review Neuroscience, 8(7), 559–567.

    Article  Google Scholar 

  • Rubenstein, J. L., & Merzenich, M. M. (2003). Model of autism: Increased ratio of excitation/inhibition in key neural systems. Genes, Brain, and Behavior, 2(5), 255–267.

    Article  PubMed  Google Scholar 

  • Saha, S., Batten, T. F., & Henderson, Z. (2000). A GABAergic projection from the central nucleus of the amygdala to the nucleus of the solitary tract: A combined anterograde tracing and electron microscopic immunohistochemical study. Neuroscience, 99(4), 613–626.

    Article  PubMed  Google Scholar 

  • Schaaf, R. C., Benevides, T. W., Leiby, B. E., & Sendecki, J. A. (2015). Autonomic dysregulation during sensory stimulation in children with autism spectrum disorder. Journal Autism and Developmental Disorders, 45(2), 461–472.

    Article  Google Scholar 

  • Seminowicz, D. A., Mayberg, H. S., McIntosh, A. R., Goldapple, K., Kennedy, S., Segal, Z., & Rafi-Tari, S. (2004). Limbic-frontal circuitry in major depression: A path modeling metanalysis. Neuroimage, 22(1), 409–418.

    Article  PubMed  Google Scholar 

  • Shahrestani, S., Stewart, E. M., Quintana, D. S., Hickie, I. B., & Guastella, A. J. (2014). Heart variability during social interactions in children with and without psychopathology: A meta-analysis. Journal of Child Psychology and Psychiatry and Allied Disciplines, 55(9), 981–989.

    Article  Google Scholar 

  • Shekhar, A., Sajdyk, T. J., Gehlert, D. R., & Rainnie, D. G. (2003). The amygdala, panic disorder, and cardiovascular responses. Annals of the New York Academy of Sciences, 985, 308–325.

    Article  PubMed  Google Scholar 

  • Smeekens, I., Didden, R., & Verhoeven, E. W. (2015). Exploring the relationship of autonomic and endocrine activity with social functioning in adults with autism spectrum disorders. Journal Autism and Developmental Disorders, 45(2), 495–505.

    Article  Google Scholar 

  • Sohn, J.-H., Sokhadze, E., & Watanuki, S. (2001). Electrodermal and cardiovascular manifestations of emotions in children. Journal of Physiological Anthropology and Applied Human Science, 20(2), 55–64.

    Article  PubMed  Google Scholar 

  • Sokhadze, E. M., Baruth, J. M., Sears, L., Sokhadze, G. E., El-Baz, A. S., & Casanova, M. F. (2012). Prefrontal neuromodulation using rTMS improves error monitoring and correction functions in autism. Applied Psychophysiology and Biofeedback, 37(2), 91–102.

    Article  PubMed  Google Scholar 

  • Sokhadze, E., Baruth, J., Tasman, A., Mansoor, M., Ramaswamy, R., Sears, L., et al. (2010). Low-frequency repetitive transcranial magnetic stimulation (rTMS) affects event-related potential measures of novelty processing in autism. Applied Psychophysiology and Biofeedback, 35(1), 147–161.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sokhadze, E. M., El-Baz, A., Baruth, J., Mathai, G., Sears, L., & Casanova, M. F. (2009). Effects of a low-frequency repetitive transcranial magnetic stimulation (rTMS) on gamma frequency oscillations and event-related potentials during processing of illusory figures in autism. Journal of Autism and Developmental Disorders, 39(4), 619–634.

    Article  PubMed  Google Scholar 

  • Sokhadze, E., El-Baz, A., Sears, L., Opris, I., & Casanova, M. F. (2014). Neuromodulation based on rTMS improves electrocortical functional measures of information processing and behavioral responses in autism. Frontiers in System Neurosciences, 8, 134. doi:10.3389/fnsys.2014.00134.

    Google Scholar 

  • Thayer, J. F. (2015). A neurovisceral integration perspective. In The 46th annual meeting of the Association for Applied Psychophysiology and Biofeedback, Austin, TX, March 14.

  • Thayer, J. F., & Friedman, B. H. (2002). Stop that! Inhibition, sensitization, and their neurovisceral concomitants. Scandinavian Journal of Psychology, 43(2), 123–130.

    Article  PubMed  Google Scholar 

  • Thayer, J. F., & Lane, R. D. (2000). A model of neurovisceral integration in emotion regulation and dysregulation. Journal of Affective Disorders, 61(3), 201–216.

    Article  PubMed  Google Scholar 

  • Thayer, J. F., & Lane, R. D. (2005). The importance of inhibition in dynamical systems models of emotion and neurobiology. Brain and Behavioral Sciences, 28(2), 218–219.

    Article  Google Scholar 

  • Thayer, J. F., & Lane, R. D. (2009). Claude Bernard and the heart–brain connection: Further elaboration of a model of neurovisceral integration. Neuroscience and Biobehavioral Reviews, 33(2), 81–88.

    Article  PubMed  Google Scholar 

  • Toichi, M., & Kamio, Y. (2003). Paradoxical autonomic response to mental tasks in autism. Journal of Autism and Developmental Disorders, 33(4), 417–426.

    Article  PubMed  Google Scholar 

  • Udupa, K., Sathyaprabha, T. N., Thirthalli, J., Kishore, K. R., Raju, T. R., & Gangadhar, B. N. (2007). Modulation of cardiac autonomic functions in patients with major depression treated with repetitive transcranial magnetic stimulation. Journal of Affective Disorders, 104(1–3), 231–236.

    Article  PubMed  Google Scholar 

  • Uijtdehaage, S. H., & Thayer, J. F. (2000). Accentuated antagonism in the control of human heart rate. Clinical Autonomic Research, 10(3), 107–110.

    Article  PubMed  Google Scholar 

  • van Engeland, H. (1984). The electrodermal orienting response to auditive stimuli in autistic children, normal children, mentally retarded children, and child psychiatric patients. Journal of Autism and Developmental Disorders, 14(3), 261–279.

    Article  PubMed  Google Scholar 

  • Wechsler, D. (2004). Wechsler intelligence scale for children-fourth edition integrated (WISC-IV Integrated). San Antonio, TX: Harcourt.

    Google Scholar 

  • Yoshida, T., Yoshino, A., Kobayashi, Y., Inoue, M., Kamakura, K., & Nomura, S. (2001). Effects of slow repetitive transcranial magnetic stimulation on heart rate variability according to power spectrum analysis. Journal of the Neurological Sciences, 184(1), 77–80.

    Article  PubMed  Google Scholar 

  • Zahn, T. P., Rumsey, J. M., & Van Kammen, D. P. (1987). Autonomic nervous system activity in autistic, schizophrenic, and normal men: Effects of stimulus significance. Journal of Abnormal Psychology, 96(2), 135–144.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Funding for this work was provided by the FERB graduate student grant to Marie Hensley, and NIH grant R01 MH086784 to Dr. Manuel F. Casanova.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Estate M. Sokhadze.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Hensley, M.K., Tasman, A. et al. Heart Rate Variability and Skin Conductance During Repetitive TMS Course in Children with Autism. Appl Psychophysiol Biofeedback 41, 47–60 (2016). https://doi.org/10.1007/s10484-015-9311-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10484-015-9311-z

Keywords

Navigation