Skip to main content
Log in

A critical review of selective attention: an interdisciplinary perspective

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

During the last half century, significant efforts have been made to explore the underlying mechanisms of visual selective attention using a variety of approaches—psychology, neuroscience, and computational models. Among them, the computational approach emerged on the stage with the development of computer science and computer vision focusing researchers interests in this area. However, computer scientists often face the difficulty of how to construct a computational model of selective attention working on their own purpose. Here, we critically review studies of selective attention from a multidisciplinary perspective to take lessons from psychological and biological studies of attention. We consider how constraints from those studies can be imposed on computational models of selective attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Avraham T, Lindenbaum M (2010) Esaliency (extended saliency): meaningful attention using stochastic image modeling. IEEE Trans Pattern Anal Mach Intell 32(4): 693–708

    Article  Google Scholar 

  • Bar MA (2003) Cortical mechanism for triggering top-down facilitation in visual object recognition. J Cogn Neurosci 15: 600–609

    Article  Google Scholar 

  • Balkenius C (2000) Attention, habituation and conditioning: toward a computational model. Cogn Sci Q 1(2): 171–214

    Google Scholar 

  • Baylis GC, Driver J (1992) Visual parsing and response competition: the effect of grouping factors. Percept Psychophys 51: 145–162

    Article  Google Scholar 

  • Beck DM, Kastner S (2008) Top-down and bottom-up mechanisms in biasing competition in the human brain. Vis Res 49(10): 1154–1165

    Article  Google Scholar 

  • Beck DM, Lavie N (2005) Look here but ignore what you see: effects of distractors at fixation. J Exp Psychol Hum Percept Perform 31: 592–607

    Article  Google Scholar 

  • Boehler CN, Schoenfeld MA, Heinze HJ, Hopf JM (2010) Object-based selection of irrelevant features is not confined to the attended object. J Cogn Neurosci. doi:10.1162

  • Borji A, Ahmadabadi MN, Araabi BN, Hamidi M (2010) Online learning of task-driven object-based visual attention control. Image Vis Comput 28(7): 1130–1145

    Article  Google Scholar 

  • Broadbent DE (1958) Perception and communication. Pergamon, London

    Book  Google Scholar 

  • Buschman RJ, Miller EK (2007) Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Sci 315: 1860–1862

    Article  Google Scholar 

  • Chikkerur S, Serre T, Tan C, Poggio T (2010) What and where: a Bayesian inference theory of attention. Vis Res 50(22): 2233–2247

    Article  Google Scholar 

  • Corbetta M, Miezin FM, Dobmeyer S, Shulman GL, Petersen SE (1990) Attentional modulation of neural processing of shape, color, and velocity in humans. Science 248: 1556–1559

    Article  Google Scholar 

  • Colby CL, Goldberg ME (1999) Space and attention in parietal cortex. Annu Rev Neurosci 22: 319–349

    Article  Google Scholar 

  • Corbetta M, Shulman GL (2002) Control of goal-direct and stimulus-driven attention in the brain. Nat Neurosci Rev 3: 201–215

    Article  Google Scholar 

  • Deco G, Schurmann B (2000) A hierarchical neural system with attentional top-down enhancement of the spatial resolution for object recognition. Vis Res 40(20): 2845–2859

    Article  Google Scholar 

  • Deco G, Rolls ET (2005) Neurodynamics of biased competition and cooperation for attention: a model with spiking neurons. J Neurophysiol 94(1): 295–313

    Article  Google Scholar 

  • Desimone R, Duncan J (1995) Neural mechanism of selective attention. Annu Rev Neurosci 18: 193–222

    Article  Google Scholar 

  • de-Wit LH, Kentridge RW, Milner AD (2008) Object-based attention and visual area LO. Neuropsychologia 47: 1483–1490

    Article  Google Scholar 

  • DeYoe EA, Van Essen DC (1988) Concurrent processing streams in monkey visual cortex. Trends Neurosci 11: 219–226

    Article  Google Scholar 

  • DeYoe EA, Felleman DJ, Van Essen DC, McClendon E (1994) Processing streams in visual area v4 and inferotemporal cortex of the macaque monkey. Nature 37: 1151–1154

    Google Scholar 

  • Duncan J (1984) Selective attention and the organization of visual information. J Exp Psychol Gen 113: 501–517

    Article  Google Scholar 

  • Duncan J, Humphreys GW, Ward R (1997) Competitive brain activity in visual attention. Curr Opin Neurobiol 7: 255–261

    Article  Google Scholar 

  • Eckstein MP, Shimozaki SS, Abbey CK (2002) The footprints of visual attention in the Posner cueing paradigm revealed by classification images. J Vis 2: 25–45

    Article  Google Scholar 

  • Egeth HE, Yantis S (1997) Visual attention: control, representation, and time course. Annu Rev Psychol 48: 269–297

    Article  Google Scholar 

  • Egly R, Driver J, Rafal RD (1994) Shifting visual attention between objects and locations: evidence from normal and parietal lesion subjects. J Exp Psychol Gen 123: 161–177

    Article  Google Scholar 

  • Elazary L, Itti L (2008) Interesting objects are visually salient. J Vis 8(3): 1–15

    Article  Google Scholar 

  • Ellis A.W., Young A.W. (1996) Human cognitive neuropsychology: a textbook with readings. Psychology Press, Hove

    Google Scholar 

  • Eriksen CW, James JD (1986) Visual attention within and around the field of local attention: a zoom lens model. Percept Psychophys 40(4): 225–240

    Article  Google Scholar 

  • Fecteau JH, Munoz DP (2006) Salience, relevance, and firing: a priority map for target selection. Trends Cogn Sci 10(8): 382–390

    Article  Google Scholar 

  • Fink GR, Dolan RJ, Halligan PW, Marshall JC, Frith CD (1997) Space-based and object-based visual attention: shared and specific neural mechanism. Brain 120: 2013–2028

    Article  Google Scholar 

  • Fu H, Chi Z, Feng D (2009) An efficient algorithm for attention-driven image interpretation from segments. Pattern Recogn 42(1): 126–140

    Article  MATH  Google Scholar 

  • Gao D, Mahadevan V, Vasconcelos N (2008) On the plausibility of the discriminant center-surround hypothesis for visual saliency. J Vis 8(7): 1–18

    Article  Google Scholar 

  • Gottlieb JP, Kusunoki M, Goldberg ME (1998) The representation of visual salience in monkey parietal cortex. Nature 391: 481–484

    Article  Google Scholar 

  • Gouet-Brunet V, Lameyre B (2008) Object recognition and segmentation in videos by connecting heterogeneous visual features. Comput Vis Image Understand 111(1): 86–109

    Article  Google Scholar 

  • Grossberg S (2005) Linking attention to learning, expectation, competition, and consciousness. In: Itti L, Rees G, Tsotsos J (eds) Neurobiology of attention. Academic Press, Elsevier, pp 652–662

    Chapter  Google Scholar 

  • Hamker FH (2006) Modeling feature-based attention as an active top-down inference process. BioSystems 86: 91–99

    Article  Google Scholar 

  • Hopfinger JB, Buonocore MH, Mangun GR (2000) The neural mechanisms of top-down attentional control. Nat Neurosci 3: 284–291

    Article  Google Scholar 

  • Hou X, Zhang L (2007) Saliency detection: a spectral residual approach. In: Proceedings of the IEEE conference on computer vision and pattern recognition. Minneapolis, MN, pp 1–8

  • Hu Y, Rajan D, Chia L-T (2008) Detection of visual attention regions in images using robust subspace analysis. J Vis Commun Image Represent 19(3): 199–216

    Article  Google Scholar 

  • Humphreys GW, Riddoch MJ (1995) Separate coding of space within and between perceptual objects: evidence from unilateral visual neglect. Cogn Neuropsychol 12(3): 283–311

    Article  Google Scholar 

  • Indiveri G (2008) Neuromorphic VLSI models of selective attention: from single chip vision sensors to multi-chip systems. Sensors 8(9): 5352–5375

    Article  Google Scholar 

  • Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell 20(11): 1254–1259

    Article  Google Scholar 

  • Itti L, Koch C (2000) A saliency-based search mechanism for overt and covert shifts of visual attention. Vis Res 40: 1489–1506

    Article  Google Scholar 

  • Itti L, Koch C (2001) Computational modeling of visual attention. Nat Neurosci Rev 21: 314–329

    Google Scholar 

  • Itti L, Baldi P (2006) Bayesian surprise attracts human attention. In: Weiss Y, Scholkopf B, Platt J (eds) Advances in neural information processing systems, vol 18. MIT press, MA, pp 1–8

    Google Scholar 

  • Julesz B (1991) Early vision and focal attention. Rev Mod Phys 63: 735–772

    Article  Google Scholar 

  • Kadir T, Brady M (2001) Scale, saliency and image description. Int J Comput Vis 30(2): 77–116

    Google Scholar 

  • Kanwisher N, Wojciulik E (2000) Visual attention: insights from brain imaging. Nat Neurosci Rev 1: 91–100

    Article  Google Scholar 

  • Kanwisher N (2003) The ventral visual object pathway in humans: evidence from fMRI. In: Chalupa L, Werner J (eds) The visual neurosciences. MIT Press, Cambridge, MA, pp 1179–1189

    Google Scholar 

  • Kastner S, Ungerleider LG (2000) Mechanism of visual attention in the human cortex. Annu Rev Neurosci 23: 315–341

    Article  Google Scholar 

  • Kastner S, DeWeerd P, Desimone R, Ungerleider LG (1998) Mechanisms of directed attention in ventral extrastriate cortex as revealed by functional MRI. Science 282: 108–111

    Article  Google Scholar 

  • Kim BK, Lee S-Y (2004) Sequential recognition of superimposed patterns with top-down selective attention. Neurocomputing 58(60): 633–640

    Article  Google Scholar 

  • Kimchi R, Razpurker-Apfeld I (2004) Perceptual grouping and attention: not all groupings are equal. Psychon Bull Rev 11(4): 687–696

    Article  Google Scholar 

  • Koch C, Tsuchiya N (2007) Attention and consciousness: two distinct brain processes. Trends Cogn Sci 11: 16–22

    Article  Google Scholar 

  • Lamme VAF (1995) The neurophysiology of figure-ground segregation in primary visual cortex. J Neurosci 15: 1605–1615

    Google Scholar 

  • Lavie N (1995) Perceptual load as a necessary condition for selective attention. Exp Psychol Hum Percept Perform 21: 451–468

    Article  Google Scholar 

  • Lavie N. (1995) Perceptual load as a necessary condition for selective attention. J Exp Psychol Hum Percept Perform 21: 451–468

    Article  Google Scholar 

  • Lavie N (2005) Distracted and confused?: selective attention under load. Trends Cogn Sci 9: 75–82

    Article  Google Scholar 

  • Lavie N, Driver J (1996) On the spatial extent of attention in object based visual selection. Percept Psychophys 58(8): 1238–1251

    Article  Google Scholar 

  • Lee KW (2008) Guiding attention by cooperative cues. J Comput Sci Technol 23(5): 874–884

    Article  Google Scholar 

  • Lee KW, Feng J, Buxton H (2005) Cued search: a computational model of selective attention. IEEE Trans Neural Netw 16(4): 910–924

    Article  Google Scholar 

  • Lee S, Kim K, Kim J-J, Kim M, Yoo H-J (2010) Familiarity based unified visual attention model for fast and robust object recognition. Pattern Recogn 43: 1116–1128

    Article  MATH  Google Scholar 

  • Levine MW, Shefner JM (1991) Fundamentals of sensation and perception. Brooks/Cole, CA

    Google Scholar 

  • Ling S, Liu T, Carrasco M (2009) How spatial and feature-based attention affect the gain and tuning of population responses. Vis Res 49: 1194–1204

    Article  Google Scholar 

  • Luck SJ, Chelazzi L, Hillyard SA, Desimone R (1997) Neural mechanisms of spatial selective attention in areas v1, v2, and v4 of macaque visual cortex. J Neurophysiol 77: 24–42

    Google Scholar 

  • Luck SJ, Ford MA (1998) On the role of selective attention in visual perception. Proc Natil Acad Sci USA 95: 825–830

    Article  Google Scholar 

  • Mahadevan V, Vasconcelos N (2010) Spatiotemporal saliency in dynamic scenes. IEEE Trans Pattern Anal Mach Intell 32(1): 171–177

    Article  Google Scholar 

  • Marr D (1982) Vision. W. H. Freeman and Company, San Francisco

    Google Scholar 

  • Maunsell JHR, Treue S (2006) Feature-based attention in visual cortex. Trends Neurosci 29: 317–322

    Article  Google Scholar 

  • Mendi E, Milanova M (2010) Contour-based image segmentation using selective visual attention. J Softw Eng Appl 3: 796–802

    Article  Google Scholar 

  • Miau F, Papageorgiou C, Itti L (2001) Neuromorphic algorithms for computer vision and attention. In: Proceedings of the SPIE 46 annual international symposium on optical science and technology, vol 4479, pp 12–23

  • Mishkin M, Ungerleider LG, Macko KA (1983) Object vision and spatial vision: two cortical pathways. Trends Neurosci 6: 414–417

    Article  Google Scholar 

  • Mitchell J, Stoner G, Reynolds J (2004) Object-based attention determines dominance in binocular rivalry. Nature 429: 410–413

    Article  Google Scholar 

  • Moore CM, Yantis S, Vauchan B (1988) Object-based visual selection: evidence from perceptual completion. Psychol Sci 9: 104–110

    Article  Google Scholar 

  • Moran J, Desimone R (1985) Selective attention gates visual processing in the extrastriate cortex. Science 229: 782–784

    Article  Google Scholar 

  • Mozer MC, Sitton M (1998) Computational modeling of spatial attention. In: Pashler H (ed) Attention. Psychology Press, London, pp 341–393

    Google Scholar 

  • Muller NG, Bartelt OA, Donner TH, Villringer A, Brandt SA (2003) A physiological correlate of the “Zoom Lens” of visual attention. J Neurosci 23: 3561–3565

    Google Scholar 

  • Muller NG, Kleinschmidt A (2003) Dynamic interaction of object- and space-based attention in retinotopic visual areas. J Neurosci 23: 9812–9816

    Google Scholar 

  • Navalpakkam V, Itti L (2005) Modeling the influence of task on attention. Vis Res 45(2): 205–231

    Article  Google Scholar 

  • Navalpakkam V, Itti L (2006) An integrated model of top-down and bottom-up attention for optimal object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition. New York, NY, pp 2049–2056

  • Norman DA (1968) Towards a theory of memory and attention. Psychol Rev 75: 522–536

    Article  Google Scholar 

  • Nothdurft HC (2006) Salience and target selection in visual search. Vis Cogn 14(4-8): 514–542

    Article  Google Scholar 

  • O’Craven K, Kansisher N, Downing P (1999) fMRI evidence for objects as the units of attentional selection. Nature 401: 584–587

    Article  Google Scholar 

  • Oliva A, Torralba A (2007) The role of context in object recognition. Trends Cogn Sci 11(12): 520–527

    Article  Google Scholar 

  • Olshausen BA, Anderson CH, Van Essen DC (1993) A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. J Neurosci 13(11): 4700–4719

    Google Scholar 

  • Orabona F, Metta G, Sandini G (2007) A Proto-object based visual attention model. In: Paletta L, Rome E (eds) Lecture notes in artificial intelligence, vol 4840. Berlin, Heidelberg, pp 198–215

  • Palmer SE (1998) The psychology of perceptual organization: a transformational approach. In: Beck J, Hope B, Rosenfeld A (eds) Human and machine vision. Academic, Orlando, pp 269–339

    Google Scholar 

  • Polk TA, Drake RM, Jonides JJ, Smith MR, Smith EE (2008) Attention enhances the neural processing of relevant features and suppresses the processing of irrelevant features in humans: a functional magnetic resonance imaging study of the Stroop task. J Neurosci 28: 13786–13792

    Article  Google Scholar 

  • Posner MI, Snyder CRR, Davidson BJ (1980) Attention and the detection of signals. J Exp Psychol Gen 109: 160–174

    Article  Google Scholar 

  • Posner MI, Nissen MJ, Ogden WC (1977) Attended and unattended processing modes: the role of set for spatial location. In: Pick HL, Saltzman IJ (eds) Modes of perceiving and processing information. Erlbaum, Hillsdale, pp 160–174

    Google Scholar 

  • Posner MI (1980) Orienting of attention. Q J Exp Psychol 32: 3–25

    Article  Google Scholar 

  • Qiu FT, von der Heydt R (2007) Neural representation of transparent overlay. Nat Neurosci 10: 283–284

    Article  Google Scholar 

  • Reynolds JH, Desimone R (2003) Interacting roles of attention and visual salience in V4. Neuron 37: 853–863

    Article  Google Scholar 

  • Riesenhuber M (2005) Object recognition in cortex: neural mechanisms and possible roles for attention. In: Itti L, Rees G, Tsotsos J (eds) Neurobiology of Attention. Academic Press, Elsevier, pp 279–287

    Chapter  Google Scholar 

  • Roelfserna Lamme PR, Lamme VAF, Spekreijse H (1998) Object-based attention in the primary visual cortex of the macaque monkey. Nature 395: 376–381

    Article  Google Scholar 

  • Roggeman C, Fias W, Verguts T (2010) Salience maps in parietal cortex: imaging and computational modeling. Neuroimage 52(3): 1005–1014

    Article  Google Scholar 

  • Rybak IA, Gusakova VI, Golovan AV, Podladchikova LN, Shevtsova NAA (2005) Attention-guided recognition based on what and where representations: a behavioral model. In: Itti L, Rees G, Tsotsos J (eds) Neurobiology of Attention. Academic Press, Elsevier, pp 2387–2400

    Google Scholar 

  • Schoenfeld MA, Tempelmann C, Martinez A, Hopf JM, Sattler C, Heinze HJ, Hillyard SA (2003) Dynamics of feature binding during object-selective attention. Proc Natl Acad Sci 100: 11806–11811

    Article  Google Scholar 

  • Serences JT, Schwarzbach J, Courtney SM, Golay X, Yantis S (2004) Control of object-based attention in human cortex. Cereb Cortex 14: 1346–1357

    Article  Google Scholar 

  • Shimozaki SS, Eckstein MP, Abbey CK (2003) Comparison of two weighted integration models for the cueing task: Linear and likelihood. J Vis 3(3): 209–229

    Article  Google Scholar 

  • Shomstein S, Yantis S (2004) Configural and contextual prioritization in object-based attention. Psychon Bull Rev 11: 247–253

    Article  Google Scholar 

  • Sterzer P, Kleinschmidt A, Rees G (2009) The neural bases of multistable perception. Trends Cogn Sci 13(7): 310–318

    Article  Google Scholar 

  • Sun Y, Fisher R (2003) Object-based visual attention for computer vision. Artif Intell 146(1): 77–123

    Article  MathSciNet  MATH  Google Scholar 

  • Sun Y, Fisher R, Wang F, Gomes HM (2008) A computer vision model for visual object based attention and eye movements. Comput Vis Image Understand 112(2): 126–142

    Article  Google Scholar 

  • Torralbo A, Beck DM (2008) Perceptual load-induced selection as a result of local competitive interactions in visual cortex. Psychol Sci 19(10): 1045–1050

    Article  Google Scholar 

  • Torralba A, Oliva A, Castelhano M, Henderson JM (2006) Contextual guidance of attention in natural scenes: the role of global features on object search. Psychol Rev 113(4): 766–786

    Article  Google Scholar 

  • Treisman A, Gelade G (1980) A feature-integration theory of attention. Cogn Psychol 12: 97–136

    Article  Google Scholar 

  • Treisman A, Schmidt H (1982) Illusory conjunctions in perception of objects. Cogn Psychol 14: 107–141

    Article  Google Scholar 

  • Treisman A (1960) Contextual cues in selective listening. Q J Exp Psychol 12: 242–248

    Article  Google Scholar 

  • Turatto M, Mazza V, Umilta C (2005) Crossmodal object-based attention: auditory objects affect visual processing. Cognition 96: B55–B64

    Article  Google Scholar 

  • Vanrullen R (2003) Visual saliency and spike timing in the ventral visual pathway. J Physiol (Paris) 97(2): 365–377

    Article  Google Scholar 

  • Walther D, Rutishauser U, Koch C, Perona P (2005) Selective visual attention enables learning and recognition of multiple objects in cluttered scenes. Comput Vis Image Understand 100: 41–63

    Article  Google Scholar 

  • Wegener D, Ehn F, Aurich MK, Galashan FO, Kreiter AK (2008) Feature-based attention and the suppression of non-relevant object features. Vis Res 48: 2696–2707

    Article  Google Scholar 

  • Wojciulik E, Kanwisher N (1999) The generality of parietal involvement in visual attention. Neuron 23: 747–764

    Article  Google Scholar 

  • Wolfe JM (1994) Guided search 2.0: a revised model of visual search. Psychon Bull Rev 1: 202–238

    Article  Google Scholar 

  • Won W-J, Ban S-W, Moon J (2006) Biologically motivated face selective attention system. In: Proceedings of the international joint conference on neural networks, Vancouver, Canada, pp 4292–4297

  • Wuhr P, Frings C (2008) A case for inhibition: visual attention suppresses the processing of irrelevant objects. J Exp Psychol Gen 137: 116–130

    Article  Google Scholar 

  • Zhaoping L (2008) Attention capture by eye of origin singletons even without awareness–a hallmark of a bottom-up saliency map in the primary visual cortex. J Vis 8(1): 1–18

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunseung Choo.

Additional information

This research was supported in part by MKE and MEST, Korean government, under ITRC NIPA-2010-(C1090-1021-0008) and WCU NRF (No. R31-2008-000-10062-0), respectively.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, K., Choo, H. A critical review of selective attention: an interdisciplinary perspective. Artif Intell Rev 40, 27–50 (2013). https://doi.org/10.1007/s10462-011-9278-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-011-9278-y

Keywords

Navigation