Skip to main content
Log in

Morphological and molecular aspects of physiological vascular morphogenesis

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

The cardiovascular system plays a crucial role in vertebrate development and homeostasis. Several genetic and epigenetic mechanisms are involved in the early development of the vascular system. During embryonal life, blood vessels first appear as the result of vasculogenesis, whereas remodeling of the primary vascular plexus occurs by angiogenesis. Many tissue-derived factors are involved in blood vessel formation and evidence is emerging that endothelial cells themselves represent a source of instructive signals to non-vascular tissue cells during organ development. This review article summarizes our knowledge concerning the principal factors involved in the regulation of vascular morphogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Risau W, Flamme I (1995) Vasculogenesis. Annu Rev Cell Dev Biol 11:73–91

    Article  PubMed  CAS  Google Scholar 

  2. Pardanaud L, Yassine F, Dieterlen-Lievre F (1999) Relationship between vasculogenesis, angiogenesis and haematopoiesis during avian ontogeny. Development 105:473–485

    Google Scholar 

  3. Poole TJ, Coffin JD (1991) Morphogenetic mechanisms in avian vascular development. In: Feinberg RN, Sherer GK, Auerbach R (eds) The development of the vascular system. Karger, Basel, pp 25–36

    Google Scholar 

  4. Ribatti D, Vacca A, Nico B, Roncali L, Dammacco F (2001) Postnatal vasculogenesis. Mech Dev 100:157–163

    Article  PubMed  CAS  Google Scholar 

  5. Choi K, Kennedy M, Kazarov P, Papadimitriov JC, Keller G (1998) A common precursor for hematopoietic and endothelial cells. Development 125:725–732

    PubMed  CAS  Google Scholar 

  6. Pardanaud L, Luton D, Prigent M, Bourcheix LM, Catola M, Dieterién-Lièvre F (1996) Two distinct endothelial lineages in ontogeny, one of them related to hemopoiesis. Development 122:1363–1371

    PubMed  CAS  Google Scholar 

  7. Vokes SA, Krieg PA (2002) Endoderm is required for vascular endothelial tube formation, but not for angioblast specification. Development 129:775–785

    PubMed  CAS  Google Scholar 

  8. Flamme I, Frolich T, Risau W (1997) Molecular mechanisms of vasculogenesis and embryonic angiogenesis. J Cell Physiol 173:206–210

    Article  PubMed  CAS  Google Scholar 

  9. Cox CM, Poole TJ (2000) Angioblast differentiation is influenced by the local environment: FGF-2 induces angioblasts and pattern vessel formation in the quail embryo. Dev Dyn 218:371–382

    Article  PubMed  CAS  Google Scholar 

  10. Zhou M, Sutliff RL, Paul RJ, Lorenz JN, Hoying JB, Haudenschild CC et al (1998) Fibroblast growth factor 2 control of vascular tone. Nat Med 4:201–207

    Article  PubMed  CAS  Google Scholar 

  11. Tobe T, Ortega S, Luna JD, Ozaki H, Okamoto N, Derevjanik NL et al (1998) Targeted disruption of the FGF2 gene does not prevent choroidal neovascularization in a murine model. Am J Pathol 153:1641–1646

    PubMed  CAS  Google Scholar 

  12. Ozaki H, Okamoto N, Ortega S, Chang M, Ozaki K, Sadda S et al (1998) Basic fibroblast growth factor is neither necessary nor sufficient for the development of retinal neovascularization. Am J Pathol 153:757–765

    PubMed  CAS  Google Scholar 

  13. Fulgham DL, Widhalm SR, Martin S, Coffin JD (1999) FGF-2 dependent angiogenesis is a latent phenotype in basic fibroblast growth factor transgenic mice. Endothelium 6:185–195

    Article  PubMed  CAS  Google Scholar 

  14. Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kiekens L, Gertsenstein M et al (1996) Abnormal blood vessels development and lethality in embryos lacking a single VEGF allele. Nature 380:435–439

    Article  PubMed  CAS  Google Scholar 

  15. Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea KS et al (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380:439–442

    Article  PubMed  CAS  Google Scholar 

  16. Shalaby F, Rossant J, Yamaguchi TP, Gertsentstein M, Wu XF, Breiman ML et al (1995) Failure of blood island formation and vasculogenesis in Flk-1 deficient mice. Nature 376:62–66

    Article  PubMed  CAS  Google Scholar 

  17. Shalaby F, Ho J, Fisher KD, Schuh AC, Schwartz L, Bernstein A et al (1997) A requirement for Flk 1 in primitive and definitive hematopoiesis and vasculogenesis. Cell 89:981–990

    Article  PubMed  CAS  Google Scholar 

  18. Fong GH, Rossant J, Gertsenstein M, Breitman ML (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376:66–70

    Article  PubMed  CAS  Google Scholar 

  19. Fong GH, Zhang L, Bryce DM, Peng J (1999) Increased hemangioblast commitment, not vascular disorganization, is the primary defect in flt-1 knock-out mice. Development 126:3015–3025

    PubMed  CAS  Google Scholar 

  20. Drake CJ, Little CD (1995) Exogenous vascular endothelial growth factor induces malformed and hyperfused vessels during embryonic neovascularization. Proc Natl Acad Sci USA 92:7657–7761

    Article  PubMed  CAS  Google Scholar 

  21. Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S et al (1996) Requisite role of angiopoietin-1, a ligand for the Tie-2 receptor, during embryonic angiogenesis. Cell 87:1171–1180

    Article  PubMed  CAS  Google Scholar 

  22. Puri MC, Partanen J, Rossant J, Bernstein A (1999) Interaction of the TEK and TIE receptor tyrosine kinases during cardiovascular development. Development 126:4569–4580

    PubMed  CAS  Google Scholar 

  23. Dumont DJ, Gradwohl G, Fong GH, Puri MC, Gertsenstein M, Auerbach A et al (1994) Dominant-negative and targeted mice mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis in the embryo. Genes Dev 8:1897–1909

    Article  PubMed  CAS  Google Scholar 

  24. Sato TN, Tozawa Y, Deutsch U, Wolburg-Buchholz K, Fujiwara Y, Gendron-Maguire M et al (1995) Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 376:70–74

    Article  PubMed  CAS  Google Scholar 

  25. Davis S, Yancopoulos GF (1999) The angiopoietins: yin and yang in angiogenesis. Curr Top Microbiol Immunol 273:173–185

    Google Scholar 

  26. Giger RJ, Clouitier JF, Sahay A, Prinjha RK, Levengood DV, Moore SE et al (2000) Neuropilin-2 is required in vivo for selective axon guidance responses to secreted semaphorins. Neuron 25:29–41

    Article  PubMed  CAS  Google Scholar 

  27. Yuan L, Moyon D, Pardanaud L, Breant C, Karkkainen MJ, Alitalo K et al (2002) Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development 129:4797–4806

    PubMed  CAS  Google Scholar 

  28. Takashima S, Kitakaze M, Asakura M, Asanuma H, Sanada S, Tashiro F et al (2002) Targeting of both mouse neuropilin-1 and neuropilin-2 genes severely impairs developmental yolk sac and embryonic angiogenesis. Proc Natl Acad Sci USA 99:3657–3662

    Article  PubMed  CAS  Google Scholar 

  29. McMahon AP, Ingham PW, Tabin CJ (2003) Developmental role and clinical significance of hedgehog signaling. Curr Top Dev Biol 53:1–114

    Article  PubMed  CAS  Google Scholar 

  30. Byrd N, Grabel L (2004) Hedgehog signaling in murine vasculogenesis and angiogenesis. Trends Cardiovasc Med 14:308–313

    Article  PubMed  CAS  Google Scholar 

  31. Vokes SA, Yatsikievych TA, Heimark RL, Mc Mahon J, Mc Mahon AP, Antin PB et al (2004) Hedgehog signaling is essential for endothelial tube formation during vasculogenesis. Development 131:4371–4380

    Article  PubMed  CAS  Google Scholar 

  32. Byrd N, Becker S, Maye P, Narasimhaiah R, St Jacques B, Zhang X et al (2002) Hedgehog signaling is essential for yolk sac vasculogenesis. Development 129:361–372

    PubMed  CAS  Google Scholar 

  33. Lawson ND, Vogel AM, Weinstein BM (2002) Sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev Cell 3:127–136

    Article  PubMed  CAS  Google Scholar 

  34. Risau W, Lemmon D (1988) Changes in the vascular extracellular matrix during embryonic vasculogenesis and angiogenesis. Dev Biol 125:441–450

    Article  PubMed  CAS  Google Scholar 

  35. Drake CJ, Davis LA, Walters L, Little CD (1990) Avian vasculogenesis and the distribution of collagens I, IV, laminin, and fibronectin in the heart primordia. J Exp Zool 255:309–322

    Article  PubMed  CAS  Google Scholar 

  36. Ausprunk DH, Dethlefsen SM, Higgin ER (1991) Distribution of fibronectin, laminin and type IV collagen during development of blood vessels in the chick chorioallantoic membrane. Issue Biomed 14:93–108

    Google Scholar 

  37. George EL, Georges-Labouesse EN, Patel-King RS, Rayburn H, Hynes RO (1993) Defects im mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 119:1079–1091

    PubMed  CAS  Google Scholar 

  38. Drake CJ, Cheresh DA, Little CD (1995) An antagonist of integrin αvβ3 prevents maturation of blood vessels during embryonic neovascularization. J Cell Sci 108:2655–2661

    PubMed  CAS  Google Scholar 

  39. Drake CJ, Davis LA, Little CD (1992) Antibodies to beta 1 integrins cause alterations of aortic vasculogenesis in vivo. Dev Dyn 193:83–91

    PubMed  CAS  Google Scholar 

  40. Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674

    Article  PubMed  CAS  Google Scholar 

  41. Burri PH, Tarek MR (1990) A novel mechanism of capillary growth in the rat pulmonary microcirculation. Anat Rec 228:35–45

    Article  PubMed  CAS  Google Scholar 

  42. Djonov V, Schmid M, Tschanz SA, Burri PH (2000) Intussusceptive angiogenesis: its role in embryonic vascular network formation. Circ Res 86:286–292

    PubMed  CAS  Google Scholar 

  43. Breier G, Albrecht U, Sterrer S, Risau W (1992) Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation. Development 114:521–532

    PubMed  CAS  Google Scholar 

  44. Park KW, Crouse D, Lee M, Karnik SK, Sorensen LK, Murphy KJ et al (2004) The axonal attractant Netrin-1 is an angiogenic factor. Proc Natl Acad Sci USA 101:16210–16215

    Article  PubMed  CAS  Google Scholar 

  45. Lu X, Le Noble F, Yuan L, Jiang Q, De Lafarge B, Sugiyama D et al (2004) The netrin receptor UNC5B mediates guidance events controlling morphogenesis of the vascular system. Nature 432:179–186

    Article  PubMed  CAS  Google Scholar 

  46. Cabrita MA, Christofori G (2008) Sprouty proteins, mastermind of receptor tyrosine kinase signaling. Angiogenesis 11:53–62

    Article  PubMed  CAS  Google Scholar 

  47. Impagantiello MA, Weitzer S, Gannon G, Compagni A, Cotten M, Christofori G (2001) Mammalian sprouty-1 and -2 are membrane-anchored phosphoprotein inhibitors of growth factor signaling in endothelial cells. J Cell Biol 152:1087–1098

    Article  Google Scholar 

  48. Lee SH, Schloss DJ, Jarvis L, Krasnow MA, Swain JL (2001) Inhibition of angiogenesis by a mouse sprouty protein. J Biol Chem 276:4128–4133

    Article  PubMed  CAS  Google Scholar 

  49. Kawasaki T, Kitsukawa T, Bekku Y, Matsuda Y, Sanbo M, Yagi T et al (1999) A requirement for neuropilin-1 in embryonic vessel formation. Development 126:4895–4902

    PubMed  CAS  Google Scholar 

  50. Miao HQ, Soker S, Feiner L, Alonso JL, Raper JA, Klagsbrun M (1999) Neuropilin-1 mediates collapsin-1/semaphorin III inhibition of endothelial cell motility. Functional competition of collapsin-1 and vascular endothelial growth factor-165. J Cell Biol 146:233–242

    PubMed  CAS  Google Scholar 

  51. Bates D, Taylor GI, Minichiello J, Farlie P, Cichowitz A, Watson N et al (2003) Neurovascular congruence results from a shared patterning mechanism that utilizes Semaphorin3A and Neuropilin-1. Dev Biol 255:77–98

    Article  PubMed  CAS  Google Scholar 

  52. Serini G, Valdembri D, Zanivan S, Morterra G, Burkhardy C, Caccavari F et al (2003) Class 3 semaphorins control vascular morphogenesis by inhibiting integrin function. Nature 424:391–397

    Article  PubMed  CAS  Google Scholar 

  53. Gitler AD, Lu MM, Epstein JA (2004) Plexin D1 and semaphorin signaling are required in endothelial cells for cardiovascular development. Dev Cell 7:107–116

    Article  PubMed  CAS  Google Scholar 

  54. Gerhardt D, Golding M, Fruttiger M, Ruhberg C, Lundkvista A, Abramsson A et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161:1163–1177

    Article  PubMed  CAS  Google Scholar 

  55. Sims DE (1986) The pericyte—a review. Tissue Cell 98:153–174

    Article  Google Scholar 

  56. Hellstrom M, Gerhardt H, Kalen M, Li X, Eriksson U, Wolburh H et al (2001) Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol 153:543–555

    Article  PubMed  CAS  Google Scholar 

  57. Hirschi K, Rohovsky SA, D’Amore PA (1998) PDGF, TGF-beta, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J Cell Biol 141:805–814

    Article  PubMed  CAS  Google Scholar 

  58. Dickson MC, Martin JS, Cousins FM, Kulkarmi AB, Karlsson S, Akhurst RJ (1995) Defective hematopoiesis and vasculogenesis in transforming growth factor-β1 knock out mice. Development 121:1845–1854

    PubMed  CAS  Google Scholar 

  59. Li DY, Sorensen LK, Brooke BS, Urness LD, Davis EC, Taylor DG et al (1999) Defective angiogenesis in mice lacking endoglin. Science 284:1534–1537

    Article  PubMed  CAS  Google Scholar 

  60. Lindahl P, Johansson BR, Leeven P, Betsholtz C (1997) Pericyte loss and microaneurysm formation in PDGF-B-dependent mice. Science 277:242–245

    Article  PubMed  CAS  Google Scholar 

  61. Le Noble F, Fleury V, Pries A, Corvol P, Eichmann E, Reneman RS (2005) Control of arterial branching morphogenesis in embryogenesis: go with flow. Cardiovasc Res 65:619–628

    Article  PubMed  CAS  Google Scholar 

  62. Hellstrom M, Kalen M, Lindahl P, Abramson A, Betsholtz C (1999) Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126:3047–3055

    PubMed  CAS  Google Scholar 

  63. Horowitz A, Simons M (2008) Branching morphogenesis. Circ Res 103:784–795

    Article  PubMed  CAS  Google Scholar 

  64. Djonov V, Kurz Hm Burri PH (2002) Optimality in the developing vascular system: branching remodeling by means of intussusceptive as an efficient adaptation mechanism. Dev Dyn 224:391–402

    Article  PubMed  Google Scholar 

  65. Bogers AJ, Gittenberger-de Groot AC, Poelmann RE, Peault BM, Huysmans HA (1989) Development of the origin of the coronary arteries, a matter of ingrowth or outgrowth? Anat Embryol 180:437–441

    Article  PubMed  CAS  Google Scholar 

  66. Risau W (1995) Differentiation of the endothelium. FASEB J 9:926–933

    PubMed  CAS  Google Scholar 

  67. Zhong TP, Childs S, Leu JP, Fishman MC (2001) Gridlock signaling pathway fashions in the first embryonic artery. Nature 414:216–220

    Article  PubMed  CAS  Google Scholar 

  68. Bratley-Sieders DM, Chen J (2004) Eph receptor tyrosine kinases in angiogenesis: from development to disease. Angiogenesis 7:17–28

    Article  Google Scholar 

  69. Wang H, Chen Z, Anderson D (1998) Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93:741–753

    Article  PubMed  CAS  Google Scholar 

  70. Adams RH, Wilkinson GA, Weiss C, Diella F, Gale NW, Deutsch U et al (1999) Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev 13:295–306

    Article  PubMed  CAS  Google Scholar 

  71. Gerety SS, Wang HU, Chen ZF, Anderson DJ (1999) Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. Mol Cell 4:403–414

    Article  PubMed  CAS  Google Scholar 

  72. Gerety SS, Anderson DJ (2002) Cardiovascular ephrinB2 is essential for embryonic angiogenesis. Development 129:1397–1410

    PubMed  CAS  Google Scholar 

  73. Ramirez-Bergeron DL, Runge A, Adelman DM, Gohil M, Simon MC (2006) HIF-dependent hematopoietic factors regulate the development of the embryonic vasculature. Dev Cell 11:81–92

    Article  PubMed  CAS  Google Scholar 

  74. Herzog Y, Kalcheim C, Kahane N, Reshef R, Neufeld G (2001) Differential expression of neuropilin-1 and neuropilin-2 in arteries and veins. Mech Dev 109:115–119

    Article  PubMed  CAS  Google Scholar 

  75. Lawson ND, Scheer N, Pham VN, Kim CH, Chitnis AB, Campos-Ortega JA et al (2001) Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development 128:3675–3683

    PubMed  CAS  Google Scholar 

  76. Moyon D, Pardanaud L, Yuan L, Breant C, Eichmann A (2001) Plasticity of endothelial cells during arterial-venous differentiation in the avian embryo. Development 128:3359–3370

    PubMed  CAS  Google Scholar 

  77. Moyon D, Pardanaud L, Yuan L, Breant C, Eichmann A (2001) Selective expression of angiopoietin 1 and 2 in mesenchymal cells surrounding veins and arteries of the avian embryo. Mech Dev 106:133–136

    Article  PubMed  CAS  Google Scholar 

  78. Shutter JR, Scully S, Fan W, Richards WG, Kitajewski J, Deblandre GA et al (2000) Dll4, a novel Notch ligand expressed in arterial endothelium. Genes Dev 14:1313–1321

    PubMed  CAS  Google Scholar 

  79. Villa N, Walker L, Lindsell CE, Gasson J, Iruela-Arispe ML, Weinmaster G (2001) Vascular expression of Notch pathway receptors and ligands is restricted to arterial vessels. Mech Dev 108:161–164

    Article  PubMed  CAS  Google Scholar 

  80. Herzog Y, Guttmann-Raviv N, Neufeld G (2005) Segregation of arterial and venous markers in subpopulations of blood islands before vessel formation. Dev Dyn 232:1047–1055

    Article  PubMed  CAS  Google Scholar 

  81. Alva JA, Iruela Arispe ML (2004) Notch signaling in vascular morphogenesis. Curr Opin Hematol 4:278–283

    Article  Google Scholar 

  82. Rossant J, Hirashima M (2003) Vascular development and patterning: making the right choices. Curr Opin Genet Dev 13:408–412

    Article  PubMed  CAS  Google Scholar 

  83. Schaper W, Scholz D (2003) Factors regulating arteriogenesis. Arterioscler Thromb Vasc Biol 23:1143–1151

    Article  PubMed  CAS  Google Scholar 

  84. Van Royen N, Piek JJ, Buschmann I, Hoefer I, Voskuil M, Schaper W (2001) Stimulation of arteriogenesis; a new concept for the treatment of arterial occlusive disease. Cardiovasc Res 49:543–553

    Article  PubMed  Google Scholar 

  85. Le Noble F, Moyon D, Pardanaud L, Yuan L, Djonov V, Matthijsen R et al (2004) Flow regulates arterial-venous differentiation in the chick embryo yolk sac. Development 131:361–375

    Article  PubMed  CAS  Google Scholar 

  86. Hoper J, Jahn H (1995) Influence of environmental oxygen concentration on growth and vascular density of the area vasculosa in chick embryos. Int J Microcirc Clin Exp 15:186–192

    Article  PubMed  CAS  Google Scholar 

  87. Semenza GL (1999) Regulation of mammalian O2 homeostasis in hypoxia-inducible factor-1. Ann Rev Cell Dev Biol 15:551–578

    Article  CAS  Google Scholar 

  88. Iyer N, Kotch V, Agani LE, Leung SW, Laughner E, Wenger RH et al (1998) Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes Dev 12:149–162

    Article  PubMed  CAS  Google Scholar 

  89. Kotch LE, Iyer NV, Laughner E, Semenza GL (1999) Defective vascularization of HIF-1α-null embryos is not associated with VEGF deficiency but with mesenchymal cell death. Dev Biol 209:254–267

    Article  PubMed  CAS  Google Scholar 

  90. Peng J, Zhang L, Drysdale L, Fong GH (2000) The transcription factor EPAS-1/hypoxia inducible factor-2α plays an important role in vascular remodeling. Proc Natl Acad Sci USA 97:8368–8391

    Article  Google Scholar 

  91. Cleaver O, Melton DA (2003) Endothelial signalling during development. Nat Med 9:661–668

    Article  PubMed  CAS  Google Scholar 

  92. Esser S, Wolburg K, Wolbirg H, Breier G, Kurzchalia T, Risau W (1998) Vascular endothelial growth factor induces endothelial fenestrations in vitro. J Cell Biol 140:947–959

    Article  PubMed  CAS  Google Scholar 

  93. Le Couter J, Kowalski J, Foster J, Hass P, Zhang Z, Dillard-Telm L et al (2001) Identification of an angiogenic mitogen selective for endocrine gland endothelium. Nature 412:877–884

    Article  CAS  Google Scholar 

  94. Tomanek RJ (2005) Formation of the coronary vasculature during development. Angiogenesis 8:273–284

    Article  PubMed  Google Scholar 

  95. Ratajska A, Czarnowska E, Ciszek B (2008) Embryonic development of the proepicardium and coronary vessels. Int J Dev Biol 52:229–236

    Article  PubMed  Google Scholar 

  96. Collardeau-Frachon S, Scoazec JY (2008) Vascular development and differentiation during human liver organogenesis. Anat Rec 291:614–627

    Article  Google Scholar 

  97. Cherqui S, Kurian SM, Schussler O, Hewel JA, Yates JR, Salomon DR (2006) Isolation and angiogenesis by endothelial progenitors in the fetal liver. Stem Cells 24:44–54

    Article  PubMed  CAS  Google Scholar 

  98. Perez-Pomares JM, Carmona R, Gonzalez-Iriarte M, Marcias D, Guadix JA, Munoz-Chapuli R (2004) Contribution of mesothelium-derived cells to liver sinusoids in avian embryos. Dev Dyn 229:465–474

    Article  PubMed  CAS  Google Scholar 

  99. Tufro A, Norwood VF, Carey RM, Gomez RA (1999) Vascular endothelial growth factor induces nephrogenesis and vasculogenesis. J Am Soc Nephrol 10:2125–2134

    PubMed  CAS  Google Scholar 

  100. Gerber HP, Hillan KJ, Ryan AM, Kowalski J, Keller GA, Rangell L et al (1999) VEGF is required for growth and survival in neonatal mice. Development 126:1149–1159

    PubMed  CAS  Google Scholar 

  101. Bjarnegard M, Egle M, Norlin J, Gustafsdottir S, Fredriksson S, Abramsson A et al (2004) Endothelium-specific ablation of PDGFB leads to pericyte loss and glomerular, cardiac and placental abnormalities. Development 131:1847–1857

    Article  PubMed  CAS  Google Scholar 

  102. deMello DE, Sawyer D, Galvin N, Reid LM (1997) Early fetal development of lung vasculature. Am J Respir Cell Mol Biol 16:568–581

    PubMed  CAS  Google Scholar 

  103. Schachtner SK, Wang YQ, Baldwin HS (2000) Qualitative and quantitative analysis of embryonic pulmonary vessel formation. Am J Respir Cell Mol Biol 22:157–165

    PubMed  CAS  Google Scholar 

  104. Hall SM, Hislop AA, Haworth SG (2002) Origin, differentiation and maturation of human pulmonary veins. Am J Respir Cell Mol Biol 26:333–340

    PubMed  CAS  Google Scholar 

  105. Crivellato E, Nico B, Ribatti D (2007) Contribution of endothelial cell to organogenesis: a modern reappraisal of an old Aristotelian concept. J Anat 211:415–427

    PubMed  CAS  Google Scholar 

  106. Matsumoto K, Yoshitomi H, Rossant J, Zaret KS (2001) Liver organogenesis promoted by endothelial cells prior to vascular function. Science 294:559–563

    Article  PubMed  CAS  Google Scholar 

  107. Yim SE, Shah Y, Tomita S, Morris HD, Gavrilova O, Lampert G et al (2006) Disruption of the Arnt gene in endothelial cells causes hepatic vascular defects and partial embryonic lethality. Hepatology 44:550–560

    Article  PubMed  CAS  Google Scholar 

  108. Lammert E, Cleaver O, Melton D (2001) Induction of pancreatic differentiation by signals from blood vessels. Science 294:564–567

    Article  PubMed  CAS  Google Scholar 

  109. Yoshitomi H, Zaret KS (2004) Endothelial cell interactions initiate dorsal pancreas development by selectively inducing the transcription factor Ptf1a. Development 131:807–817

    Article  PubMed  CAS  Google Scholar 

  110. Jacquemin P, Yoshitomi H, Kashima Y, Rousseau GG, Lemaigre FP, Zaret KS (2006) An endothelial-mesenchymal relay pathway regulates early phases of pancreas development. Dev Biol 290:189–199

    Article  PubMed  CAS  Google Scholar 

  111. Gerber HP, Ferrara N (2000) Angiogenesis and bone growth. Trends Cardiovasc Med 10:223–228

    Article  PubMed  CAS  Google Scholar 

  112. Gerber HP, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N (1999) VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med 5:623–628

    Article  PubMed  CAS  Google Scholar 

  113. Le Couter J, Moritz DR, Li B, Phillips GL, Liang XH, Gerber HP et al (2003) Angiogenesis-independent endothelial protection of liver: role of VEGFR1. Science 299:890–893

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Supported in part by MIUR (PRIN 2007), Rome, and Fondazione Cassa di Risparmio di Puglia, Bari, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Ribatti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribatti, D., Nico, B. & Crivellato, E. Morphological and molecular aspects of physiological vascular morphogenesis. Angiogenesis 12, 101–111 (2009). https://doi.org/10.1007/s10456-008-9125-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-008-9125-1

Keywords

Navigation