Skip to main content
Log in

Subject-Specific Axes of Rotation Based on Talar Morphology Do Not Improve Predictions of Tibiotalar and Subtalar Joint Kinematics

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Use of subject-specific axes of rotation may improve predictions generated by kinematic models, especially for joints with complex anatomy, such as the tibiotalar and subtalar joints of the ankle. The objective of this study was twofold. First, we compared the axes of rotation between generic and subject-specific ankle models for ten control subjects. Second, we quantified the accuracy of generic and subject-specific models for predicting tibiotalar and subtalar joint motion during level walking using inverse kinematics. Here, tibiotalar and subtalar joint kinematics measured in vivo by dual-fluoroscopy served as the reference standard. The generic model was based on a cadaver study, while the subject-specific models were derived from each subject’s talus reconstructed from computed tomography images. The subject-specific and generic axes of rotation were significantly different. The average angle between the modeled axes was 12.9° ± 4.3° and 24.4° ± 5.9° at the tibiotalar and subtalar joints, respectively. However, predictions from both models did not agree well with dynamic dual-fluoroscopy data, where errors ranged from 1.0° to 8.9° and 0.6° to 7.6° for the generic and subject-specific models, respectively. Our results suggest that methods that rely on talar morphology to define subject-specific axes may be inadequate for accurately predicting tibiotalar and subtalar joint kinematics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Arnold, E. M., S. R. Ward, R. L. Lieber, and S. L. Delp. A model of the lower limb for analysis of human movement. Ann. Biomed. Eng. 38:269–279, 2010.

    Article  PubMed  Google Scholar 

  2. Beimers, L., G. J. Tuijthof, L. Blankevoort, R. Jonges, M. Maas, and C. N. van Dijk. In-vivo range of motion of the subtalar joint using computed tomography. J. Biomech. 41:1390–1397, 2008.

    Article  PubMed  Google Scholar 

  3. Bey, M. J., R. Zauel, S. K. Brock, and S. Tashman. Validation of a new model-based tracking technique for measuring three-dimensional, in vivo glenohumeral joint kinematics. J. Biomech. Eng. 128:604–609, 2006.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bland, J. M., and D. G. Altman. Measuring agreement in method comparison studies. Stat. Methods Med. Res. 8:135–160, 1999.

    Article  CAS  PubMed  Google Scholar 

  5. Chang, L. Y., and N. S. Pollard. Method for determining kinematic parameters of the in vivo thumb carpometacarpal joint. IEEE Trans. Biomed. Eng. 55:1897–1906, 2008.

    Article  PubMed  Google Scholar 

  6. Delp, S. L., F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John, E. Guendelman, and D. G. Thelen. Opensim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54:1940–1950, 2007.

    Article  PubMed  Google Scholar 

  7. Engsberg, J. R. A biomechanical analysis of the talocalcaneal joint–in vitro. J. Biomech. 20:429–442, 1987.

    Article  CAS  PubMed  Google Scholar 

  8. Fisher, N. I., T. L. Lewis, and B. J. J. Embleton. Analysis of Two or more Samples of Vectoral or Axial Data. Statistical Analysis of Sphereical Data. Cambridge: Press Syndicate of the University of Cambridge, pp. 194–229, 1989.

    Google Scholar 

  9. Inman, V. T. The Joints of the Ankle. Baltimore: Williams & Wilkins, 1976.

    Google Scholar 

  10. Isman, R. E., and V. T. Inman. Anthropometric studies of the human foot and ankle. Bull. Prosthet. Res. 11(97):129, 1969.

    Google Scholar 

  11. Jennings. Sphere fit (least squares). 2013. https://www.mathworks.com/matlabcentral/fileexchange/34129-sphere-fit--least-squared, Accessed Feb 22, 2016.

  12. Kadaba, M. P., H. K. Ramakrishnan, and M. E. Wootten. Measurement of lower extremity kinematics during level walking. J. Orthop. Res. 8:383–392, 1990.

    Article  CAS  PubMed  Google Scholar 

  13. Leardini, A., J. J. O’Connor, F. Catani, and S. Giannini. A geometric model of the human ankle joint. J. Biomech. 32:585–591, 1999.

    Article  CAS  PubMed  Google Scholar 

  14. Leardini, A., R. Stagni, and J. J. O’Connor. Mobility of the subtalar joint in the intact ankle complex. J. Biomech. 34:805–809, 2001.

    Article  CAS  PubMed  Google Scholar 

  15. Lewis, G. S., T. L. Cohen, A. R. Seisler, K. A. Kirby, F. T. Sheehan, and S. J. Piazza. In vivo tests of an improved method for functional location of the subtalar joint axis. J. Biomech. 42:146–151, 2009.

    Article  PubMed  Google Scholar 

  16. Lewis, G. S., S. J. Piazza, and I. H. J. Sommer. In vitro assessment of a motion-based optimization method for locating the talocrural and subtalar joint axes. J. Biomech. Eng. 128:596–603, 2006.

    Article  PubMed  Google Scholar 

  17. Lunberg, A., and O. K. Svensson. The axes of rotation of the talocalcaneal and talonavicular joints. Foot 3:65–70, 1993.

    Article  Google Scholar 

  18. Maas, S. A., B. J. Ellis, G. A. Ateshian, and J. A. Weiss. Febio: finite elements for biomechanics. J. Biomech. Eng. 134:011005, 2012.

    Article  PubMed  Google Scholar 

  19. Manter, J. T. Movements of the subtalar and transverse tarsal joints. Anat. Record. 80:397–410, 1941.

    Article  Google Scholar 

  20. Nester, C. Review of literature on the axis of rotation at the subtalar joint. Foot 8:111–118, 1998.

    Article  Google Scholar 

  21. Nester, C., R. K. Jones, A. Liu, D. Howard, A. Lundberg, A. Arndt, P. Lundgren, A. Stacoff, and P. Wolf. Foot kinematics during walking measured using bone and surface mounted markers. J. Biomech. 40:3412–3423, 2007.

    Article  CAS  PubMed  Google Scholar 

  22. Nichols, J. A., M. S. Bednar, R. M. Havey, and W. M. Murray. Decoupling the wrist: a cadaveric experiment examining wrist kinematics following midcarpal fusion and scaphoid excision. J. Appl. Biomech. 1–29, 2016.

  23. Nichols, J. A., K. E. Roach, N. M. Fiorentino, and A. E. Anderson. Predicting tibiotalar and subtalar joint angles from skin-marker data with dual-fluoroscopy as a reference standard. Gait Posture. 49:136–143, 2016.

    Article  PubMed  Google Scholar 

  24. Nozaki, S., K. Watanabe, and M. Katayose. Three-dimensional analysis of talar trochlea morphology: implications for subject-specific kinematics of the talocrural joint. Clin. Anat. 29:1066–1074, 2016.

    Article  PubMed  Google Scholar 

  25. Oatis, C. A. Biomechanics of the foot and ankle under static conditions. Phys. Ther. 68:1815–1821, 1988.

    Article  CAS  PubMed  Google Scholar 

  26. Parr, W. C., H. J. Chatterjee, and C. Soligo. Calculating the axes of rotation for the subtalar and talocrural joints using 3d bone reconstructions. J. Biomech. 45:1103–1107, 2012.

    Article  CAS  PubMed  Google Scholar 

  27. Piaggio, G., D. R. Elbourne, D. G. Altman, S. J. Pocock, S. J. Evans, and C. Group. Reporting of noninferiority and equivalence randomized trials: an extension of the consort statement. JAMA. 295:1152–1160, 2006.

    Article  CAS  PubMed  Google Scholar 

  28. Reinbolt, J. A., J. F. Schutte, B. J. Fregly, B. I. Koh, R. T. Haftka, A. D. George, and K. H. Mitchell. Determination of patient-specific multi-joint kinematic models through two-level optimization. J. Biomech. 38:621–626, 2005.

    Article  PubMed  Google Scholar 

  29. Roach, K. E., B. Wang, A. L. Kapron, N. M. Fiorentino, C. L. Saltzman, K. B. Foreman, and A. E. Anderson. In vivo kinematics of the tibiotalar and subtalar joints in asymptomatic subjects: a high-speed dual fluoroscopy study. J. Biomech. Eng. 138(9):091006, 2016.

    Article  Google Scholar 

  30. Rome, K., and F. Cowieson. A reliability study of the universal goniometer, fluid goniometer, and electrogoniometer for the measurement of ankle dorsiflexion. Foot Ankle Int. 17:28–32, 1996.

    Article  CAS  PubMed  Google Scholar 

  31. Schwartz, M. H., and A. Rozumalski. A new method for estimating joint parameters from motion data. J. Biomech. 38:107–116, 2005.

    Article  PubMed  Google Scholar 

  32. Sheehan, F. T., A. R. Seisler, and K. L. Siegel. In vivo talocrural and subtalar kinematics: a non-invasive 3d dynamic mri study. Foot Ankle Int. 28:323–335, 2007.

    Article  PubMed  Google Scholar 

  33. Siegler, S., J. Chen, and C. D. Schneck. The three-dimensional kinematics and flexibility characteristics of the human ankle and subtalar joints–part I: kinematics. J. Biomech. Eng. 110:364–373, 1988.

    Article  CAS  PubMed  Google Scholar 

  34. Tulchin, K., M. Orendurff, and L. Karol. A comparison of multi-segment foot kinematics during level overground and treadmill walking. Gait Posture. 31:104–108, 2010.

    Article  PubMed  Google Scholar 

  35. Tumer, N., L. Blankevoort, M. van de Giessen, M. P. Terra, P. A. de Jong, H. Weinans, G. J. Tuijthof, and A. A. Zadpoor. Bone shape difference between control and osteochondral defect groups of the ankle joint. Osteoar. Cartil. 24:2108–2115, 2016.

    Article  CAS  Google Scholar 

  36. van den Bogert, A. J., G. D. Smith, and B. M. Nigg. In vivo determination of the anatomical axes of the ankle joint complex: an optimization approach. J. Biomech. 27:1477–1488, 1994.

    Article  PubMed  Google Scholar 

  37. Wang, B., K. E. Roach, A. L. Kapron, N. M. Fiorentino, C. Saltzman, M. Singer, and A. E. Anderson. Accuracy and feasibility of high-speed dual fluoroscopy and model-based tracking to measure in vivo ankle arthrokinematics. Gait Posture. 41:888–893, 2015.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Institutes of Health (R21 AR069773, R21 AR063844, S10 RR026565, F32 AR067075), the LS-Peery Discovery Program in Musculoskeletal Restoration, the American Orthopaedic Foot & Ankle Society, and the Orthopaedic Research and Education Foundation with funding from the Orthopaedic Research Society. The content is solely the responsibility of the authors and does not necessarily represent the official views of these funding sources. We thank K. Bo Foreman, Justine Goebel, Ashley Kapron, Bibo Wang, and Austin West for assistance collecting and processing the experimental data. We also thank Greg Stoddard for feedback regarding our statistical analyses as well as Glen Litchwark and Tim Dorn for their open-source OpenSim toolboxes, which were adapted to facilitate batch processing of our computer simulations.

Conflict of interest

The corresponding author and co-authors do not have a conflict of interest, financial or otherwise, that would inappropriately influence or bias the research reported herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew E. Anderson.

Additional information

Associate Editor Michael R. Torry oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nichols, J.A., Roach, K.E., Fiorentino, N.M. et al. Subject-Specific Axes of Rotation Based on Talar Morphology Do Not Improve Predictions of Tibiotalar and Subtalar Joint Kinematics. Ann Biomed Eng 45, 2109–2121 (2017). https://doi.org/10.1007/s10439-017-1874-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1874-9

Keywords

Navigation