Skip to main content
Log in

Power Spectral Density Analysis of Electrodermal Activity for Sympathetic Function Assessment

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Time-domain features of electrodermal activity (EDA), the measurable changes in conductance at the skin surface, are typically used to assess overall activation of the sympathetic system. These time domain features, the skin conductance level (SCL) and the nonspecific skin conductance responses (NS.SCRs), are consistently elevated with sympathetic nervous arousal, but highly variable between subjects. A novel frequency-domain approach to quantify sympathetic function using the power spectral density (PSD) of EDA is proposed. This analysis was used to examine if some of the induced stimuli invoke the sympathetic nervous system’s dynamics which can be discernible as a large spectral peak, conjectured to be present in the low frequency band. The resulting indices were compared to the power of low-frequency components of heart rate variability (HRVLF) time series, as well as to time-domain features of EDA. Twelve healthy subjects were subjected to orthostatic, physical and cognitive stress, to test these techniques. We found that the increase in the spectral powers of the EDA was largely confined to 0.045–0.15 Hz, which is in the prescribed band for HRVLF. These low frequency components are known to be, in part, influenced by the sympathetic nervous dynamics. However, we found an additional 5–10% of the spectral power in the frequency range of 0.15–0.25 Hz with all three stimuli. Thus, dynamics of the normalized sympathetic component of the EDA, termed EDASympn, are represented in the frequency band 0.045–0.25 Hz; only a small amount of spectral power is present in frequencies higher than 0.25 Hz. Our results showed that the time-domain indices (the SCL and NS.SCRs), and EDASympn, exhibited significant increases under orthostatic, physical, and cognitive stress. However, EDASympn was more responsive than the SCL and NS.SCRs to the cold pressor stimulus, while the latter two were more sensitive to the postural and Stroop tests. Additionally, EDASympn exhibited an acceptable degree of consistency and a lower coefficient of variation compared to the time-domain features. Therefore, PSD analysis of EDA is a promising technique for sympathetic function assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

EDASympn :

Normalized electrodermal activity index of sympathetic nervous system

HRVLF:

Low frequency component of heart rate variability

NS. SCR:

Non-specific skin conductance response

PSD:

Power spectral density

SCL:

Skin conductance level

References

  1. Bach, D. R., and K. J. Friston. Model-based analysis of skin conductance responses: towards causal models in psychophysiology. Psychophysiology 50:15–22, 2013.

    Article  PubMed  Google Scholar 

  2. Bai, Y., R. T. Mahon, J. C. White, P. R. Brink, and K. H. Chon. Impairment of the autonomic nervous function during decompression sickness in swine. J. Appl. Physiol. (Bethesda Md) 1985(106):1004–1009, 2009.

    Google Scholar 

  3. Bai, Y., N. Selvaraj, K. Petersen, R. Mahon, W. A. Cronin, J. White, P. R. Brink, and K. H. Chon. The autonomic effects of cardiopulmonary decompression sickness in swine using principal dynamic mode analysis. Am. J. Physiol. 305:R748–R758, 2013.

    CAS  Google Scholar 

  4. Benedek, M., and C. Kaernbach. A continuous measure of phasic electrodermal activity. J. Neurosci. Methods 190:80–91, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bohlin, G. Delayed habituation of the electrodermal orienting response as a function of increased level of arousal. Psychophysiology 13:345–351, 1976.

    Article  CAS  PubMed  Google Scholar 

  6. Boucsein, W., D. C. Fowles, S. Grimnes, G. Ben-Shakhar, W. T. Roth, M. E. Dawson, D. L. Filion, and Society for Psychophysiological Research Ad Hoc Committee on Electrodermal Measures. Publication recommendations for electrodermal measurements. Psychophysiology 49:1017–1034, 2012.

    Article  PubMed  Google Scholar 

  7. Braithwaite, J. J., D. G. Watson, R. Jones, and M. Rowe. A Guide for Analysing Electrodermal Activity (EDA) & Skin Conductance Responses (SCRs) for Psychological Experiments. Birmingham: University of Birmingham, 2013.

    Google Scholar 

  8. Chaspari, T., A. Tsiartas, L. I. Stein, S. A. Cermak, and S. S. Narayanan. Sparse representation of electrodermal activity with knowledge-driven dictionaries. IEEE Trans. Biomed. Eng. 62:960–971, 2015.

    Article  PubMed  Google Scholar 

  9. Chon, K. H., B. Yang, H. F. Posada-Quintero, K. L. Siu, M. Rolle, P. Brink, A. Birzgalis, and L. C. Moore. A novel quantitative method for diabetic cardiac autonomic neuropathy assessment in type 1 diabetic mice. J. Diabetes Sci. Technol. 8:1157–1167, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Colbert, A. P., K. Spaulding, A. Larsen, A. C. Ahn, and J. A. Cutro. Electrodermal activity at acupoints: literature review and recommendations for reporting clinical trials. J. Acupunct. Meridian Stud. 4:5–13, 2011.

    Article  PubMed  Google Scholar 

  11. Crider, A., and R. Lunn. Electrodermal lability as a personality dimension. J. Exp. Res. Personal. 5:145–150, 1971.

    Google Scholar 

  12. Critchley, H. D. Electrodermal responses: what happens in the brain. Neuroscientist 8:132–142, 2002.

    Article  PubMed  Google Scholar 

  13. DeBeck, L. D., S. R. Petersen, K. E. Jones, and M. K. Stickland. Heart rate variability and muscle sympathetic nerve activity response to acute stress: the effect of breathing. Am. J. Physiol. 299:R80–91, 2010.

    CAS  Google Scholar 

  14. Delaney, J. P., and D. A. Brodie. Effects of short-term psychological stress on the time and frequency domains of heart-rate variability. Percept. Mot. Skills 91:515–524, 2000.

    Article  CAS  PubMed  Google Scholar 

  15. Edelberg, R. Electrical activity of the skin: its measurement and uses in psychophysiology. Handb. Psychophysiol. 12:1011, 1972.

    Google Scholar 

  16. Ellaway, P. H., A. Kuppuswamy, A. Nicotra, and C. J. Mathias. Sweat production and the sympathetic skin response: improving the clinical assessment of autonomic function. Auton. Neurosci. 155:109–114, 2010.

    Article  CAS  PubMed  Google Scholar 

  17. Esler, M., G. Jennings, P. Korner, I. Willett, F. Dudley, G. Hasking, W. Anderson, and G. Lambert. Assessment of human sympathetic nervous system activity from measurements of norepinephrine turnover. Hypertension 11:3–20, 1988.

    Article  CAS  PubMed  Google Scholar 

  18. Ewing, D. J., and B. F. Clarke. Diagnosis and management of diabetic autonomic neuropathy. Br. Med. J. (Clin. Res. Ed.) 285:916–918, 1982.

    Article  CAS  Google Scholar 

  19. Florian, J. P., E. E. Simmons, K. H. Chon, L. Faes, and B. E. Shykoff. Cardiovascular and autonomic responses to physiological stressors before and after six hours of water immersion. J. Appl. Physiol. (Bethesda, Md) 1985(115):1275–1289, 2013.

    Google Scholar 

  20. Freeman, R., and M. W. Chapleau. Testing the autonomic nervous system. Handb. Clin. Neurol. 115:115–136, 2013.

    Article  PubMed  Google Scholar 

  21. Garafova, A., A. Penesova, E. Cizmarova, A. Marko, M. Vlcek, and D. Jezova. Cardiovascular and sympathetic responses to a mental stress task in young patients with hypertension and/or obesity. Physiol. Res. 63(Suppl 4):S459–467, 2014.

    PubMed  Google Scholar 

  22. Grassi, G., and M. Esler. How to assess sympathetic activity in humans. J. Hypertens. 17:719–734, 1999.

    Article  CAS  PubMed  Google Scholar 

  23. Greco, A., G. Valenza, A. Lanata, E. Scilingo, and L. Citi. cvxEDA: A convex optimization approach to electrodermal activity processing. IEEE Trans. Biomed. Eng. 2015. doi:10.1109/TBME.2015.2474131.

    PubMed  Google Scholar 

  24. Healey, J., and R. W. Picard. Detecting stress during real-world driving tasks using physiological sensors. IEEE Trans. Intell. Transp. Syst. 6:156–166, 2005.

    Article  Google Scholar 

  25. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur. Heart J. 17:354–381, 1996.

    Article  Google Scholar 

  26. Illigens, B. M. W., and C. H. Gibbons. Sweat testing to evaluate autonomic function. Clin. Auton. Res. 19:79–87, 2009.

    Article  PubMed  Google Scholar 

  27. Landis, J. R., and G. G. Koch. The measurement of observer agreement for categorical data. Biometrics 33:159–174, 1977.

    Article  CAS  PubMed  Google Scholar 

  28. Liu, Y.-P., Y.-H. Lin, Y.-C. Chen, P.-L. Lee, and C.-S. Tung. Spectral analysis of cooling induced hemodynamic perturbations indicates involvement of sympathetic activation and nitric oxide production in rats. Life Sci. 136:19–27, 2015.

    Article  CAS  PubMed  Google Scholar 

  29. Mathias, C. J., and R. Bannister. Investigation of autonomic disorders. In: Autonomic failure: a textbook of clinical disorders of the autonomic nervous system, edited by C. J. Mathias, and R. Bannister. Oxford: Oxford University Press, 1999, pp. 169–195.

    Google Scholar 

  30. McGraw, K. O., and S. P. Wong. Forming inferences about some intraclass correlation coefficients. Psychol. Methods 1:30, 1996.

    Article  Google Scholar 

  31. Mezzacappa, E. S., R. M. Kelsey, and E. S. Katkin. Breast feeding, bottle feeding, and maternal autonomic responses to stress. J. Psychosom. Res. 58:351–365, 2005.

    Article  PubMed  Google Scholar 

  32. Moses, Z. B., L. J. Luecken, and J. C. Eason. Measuring task-related changes in heart rate variability. Conf. Proc. IEEE Eng. Med. Biol. Soc. 644–647:2007, 2007.

    Google Scholar 

  33. Nygårds, M. E., and L. Sörnmo. Delineation of the QRS complex using the envelope of the e.c.g. Med. Biol. Eng. Comput. 21:538–547, 1983.

    Article  PubMed  Google Scholar 

  34. Pinna, G. D., R. Maestri, A. Torunski, L. Danilowicz-Szymanowicz, M. Szwoch, M. T. La Rovere, and G. Raczak. Heart rate variability measures: a fresh look at reliability. Clin. Sci. (London, England) 1979(113):131–140, 2007.

    Article  Google Scholar 

  35. Prakash, E. S., Madanmohan, K. R. Sethuraman, and S. K. Narayan. Cardiovascular autonomic regulation in subjects with normal blood pressure, high-normal blood pressure and recent-onset hypertension. Clin. Exp. Pharmacol. Physiol. 32:488–494, 2005.

    Article  CAS  PubMed  Google Scholar 

  36. Prystav, G. H. Electrodermal, cardiac, and respiratory activity to repeated cold pressor stimulation in drug addicts. J. Gen. Psychol. 94:259–270, 1976.

    Article  CAS  PubMed  Google Scholar 

  37. Robertson, D., G. A. Johnson, R. M. Robertson, A. S. Nies, D. G. Shand, and J. A. Oates. Comparative assessment of stimuli that release neuronal and adrenomedullary catecholamines in man. Circulation 59:637–643, 1979.

    Article  CAS  PubMed  Google Scholar 

  38. Rouleau, J. L., L. A. Moyé, J. de Champlain, M. Klein, D. Bichet, M. Packer, G. Dagenais, B. Sussex, J. M. Arnold, and F. Sestier. Activation of neurohumoral systems following acute myocardial infarction. Am. J. Cardiol. 68:80D–86D, 1991.

    Article  CAS  PubMed  Google Scholar 

  39. Sacre, J. W., C. L. Jellis, T. H. Marwick, and J. S. Coombes. Reliability of heart rate variability in patients with type 2 diabetes mellitus. Diabet. Med. 29:e33–40, 2012.

    Article  CAS  PubMed  Google Scholar 

  40. Sanchez-Gonzalez, M. A., R. W. May, A. P. Koutnik, M. Kabbaj, and F. D. Fincham. Sympathetic vasomotor tone is associated with depressive symptoms in young females: a potential link between depression and cardiovascular disease. Am. J. Hypertens. 26:1389–1397, 2013.

    Article  PubMed  Google Scholar 

  41. Sandercock, G. R. H., P. D. Bromley, and D. A. Brodie. The reliability of short-term measurements of heart rate variability. Int. J. Cardiol. 103:238–247, 2005.

    Article  PubMed  Google Scholar 

  42. Setz, C., B. Arnrich, J. Schumm, R. La Marca, G. Tröster, and U. Ehlert. Discriminating stress from cognitive load using a wearable EDA device. IEEE Trans. Inf. Technol. Biomed. 14:410–417, 2010.

    Article  PubMed  Google Scholar 

  43. Shimomura, Y., T. Yoda, K. Sugiura, A. Horiguchi, K. Iwanaga, and T. Katsuura. Use of frequency domain analysis of skin conductance for evaluation of mental workload. J. Physiol. Anthropol. 27:173–177, 2008.

    Article  PubMed  Google Scholar 

  44. Stroop, R. J. Studies of interference in serial verbal reactions. J. Exp. Psychol. 18:643–662, 1935.

    Article  Google Scholar 

  45. Vidaurre, C., T. H. Sander, and A. Schlögl. BioSig: The free and open source software library for biomedical signal processing. Comput. Intell. Neurosci. 2011:935364, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Visnovcova, Z., M. Mestanik, M. Javorka, D. Mokra, M. Gala, A. Jurko, A. Calkovska, and I. Tonhajzerova. Complexity and time asymmetry of heart rate variability are altered in acute mental stress. Physiol. Meas. 35:1319–1334, 2014.

    Article  CAS  PubMed  Google Scholar 

  47. Wieling, W., J. F. van Brederode, L. G. de Rijk, C. Borst, and A. J. Dunning. Reflex control of heart rate in normal subjects in relation to age: a data base for cardiac vagal neuropathy. Diabetologia 22:163–166, 1982.

    Article  CAS  PubMed  Google Scholar 

  48. Williamson, J. W., R. McColl, and D. Mathews. Evidence for central command activation of the human insular cortex during exercise. J. Appl. Physiol. (Bethesda, Md) 1985(94):1726–1734, 2003.

    Google Scholar 

  49. Zahn, T. P., and J. L. Rapoport. Autonomic nervous system effects of acute doses of caffeine in caffeine users and abstainers. Int. J. Psychophysiol. 5:33–41, 1987.

    Article  CAS  PubMed  Google Scholar 

  50. Zahn, T. P., J. L. Rapoport, and C. L. Thompson. Autonomic effects of dextroamphetamine in normal men: implications for hyperactivity and schizophrenia. Psychiatry Res. 4:39–47, 1981.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Office of Naval Research work unit N00014-15-1-2236.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki H. Chon.

Additional information

Associate Editor Nathalie Virag oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Posada-Quintero, H.F., Florian, J.P., Orjuela-Cañón, A.D. et al. Power Spectral Density Analysis of Electrodermal Activity for Sympathetic Function Assessment. Ann Biomed Eng 44, 3124–3135 (2016). https://doi.org/10.1007/s10439-016-1606-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1606-6

Keywords

Navigation