Skip to main content

Advertisement

Log in

The Appropriate Use of Approximate Entropy and Sample Entropy with Short Data Sets

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Approximate entropy (ApEn) and sample entropy (SampEn) are mathematical algorithms created to measure the repeatability or predictability within a time series. Both algorithms are extremely sensitive to their input parameters: m (length of the data segment being compared), r (similarity criterion), and N (length of data). There is no established consensus on parameter selection in short data sets, especially for biological data. Therefore, the purpose of this research was to examine the robustness of these two entropy algorithms by exploring the effect of changing parameter values on short data sets. Data with known theoretical entropy qualities as well as experimental data from both healthy young and older adults was utilized. Our results demonstrate that both ApEn and SampEn are extremely sensitive to parameter choices, especially for very short data sets, N ≤ 200. We suggest using N larger than 200, an m of 2 and examine several r values before selecting your parameters. Extreme caution should be used when choosing parameters for experimental studies with both algorithms. Based on our current findings, it appears that SampEn is more reliable for short data sets. SampEn was less sensitive to changes in data length and demonstrated fewer problems with relative consistency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Abbreviations

ApEn:

Approximate entropy

SampEn:

Sample entropy

SE diff :

Standard error of the difference

References

  1. Aboy, M., D. Cuesta-Frau, D. Austin, and P. Mico-Tormos. Characterization of sample entropy in the context of biomedical signal analysis. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2007:5943–5946, 2007.

    PubMed  Google Scholar 

  2. Bar-Yam, Y. Dynamics of Complex Systems. Boulder, CO: Westview Press, 2003.

    Google Scholar 

  3. Cavanaugh, J. T., N. Kochi, and N. Stergiou. Nonlinear analysis of ambulatory activity patterns in community-dwelling older adults. J. Gerontol. A Biol. Sci. Med. Sci. 65:197–203, 2010.

    Article  PubMed  Google Scholar 

  4. Chen, X., I. Solomon, and K. Chon. Comparison of the use of approximate entropy and sample entropy: applications to neural respiratory signal. Conf. Proc. IEEE Eng. Med. Biol. Soc. 4:4212–4215, 2005.

    PubMed  Google Scholar 

  5. Chon, K., C. G. Scully, and S. Lu. Approximate entropy for all signals. IEEE Eng. Med. Biol. Mag. 28:18–23, 2009.

    Article  PubMed  Google Scholar 

  6. Costa, M., A. L. Goldberger, and C. K. Peng. Multiscale entropy analysis of biological signals. Phys. Rev. E 71:021906, 2005.

    Article  Google Scholar 

  7. Cuesta-Frau, D., P. Miro-Martinez, S. Oltra-Crespo, M. Varela-Entrecanales, M. Aboy, D. Novak, and D. Austin. Measuring body temperature time series regularity using approximate entropy and sample entropy. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009:3461–3464, 2009.

    PubMed  CAS  Google Scholar 

  8. Deffeyes, J. E., R. T. Harbourne, W. A. Stuberg, and N. Stergiou. Approximate entropy used to assess sitting postural sway of infants with developmental delay. Infant Behav. Dev. 34:81–99, 2011.

    Article  PubMed  Google Scholar 

  9. Faure, P., and H. Korn. Is there chaos in the brain? I. Concepts of nonlinear dynamics and methods of investigation. C. R. Acad. Sci. III 324:773–793, 2011.

    Article  Google Scholar 

  10. Gell-Mann, M. The Quark and the Jaguar: Adventures in the Simple and the Complex. New York: Owl Books, 1994.

    Google Scholar 

  11. Georgoulis, A. D., C. Moraiti, S. Ristanis, and N. Stergiou. A novel approach to measure variability in the anterior cruciate ligament deficient knee during walking: the use of the approximate entropy in orthopaedics. J. Clin. Monit. Comput. 20:11–18, 2006.

    Article  PubMed  Google Scholar 

  12. Grabiner, M. D., and K. L. Troy. Attention demanding tasks during treadmill walking reduce step width variability in young adults. J. Neuroeng. Rehabil. 2:25, 2005.

    Article  PubMed  Google Scholar 

  13. Hong, S. L., and K. M. Newell. Motor entropy in response to task demands and environmental information. Chaos 18:033131, 2008.

    Article  PubMed  Google Scholar 

  14. Kaipust, J. P., J. M. Huisinga, M. Filipi, and N. Stergiou. Gait variability measures reveal differences between multiple sclerosis patients and healthy controls. Mot. Control 16:229–244, 2012.

    Google Scholar 

  15. Karmakar, C. K., A. H. Khandoker, R. K. Begg, M. Palaniswami, and S. Taylor. Understanding ageing effects by approximate entropy analysis of gait variability. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2007:1965–1968, 2007.

    PubMed  Google Scholar 

  16. Khandoker, A. H., M. Palaniswami, and R. K. Begg. A comparative study on approximate entropy measure and poincaré plot indexes of minimum foot clearance variability in the elderly during walking. J. Neuroeng. Rehabil. 5:4, 2008.

    Article  PubMed  Google Scholar 

  17. Korn, H., and P. Faure. Is there chaos in the brain? II. Experimental evidence and related models. C. R. Biol. 326:787–840, 2003.

    Article  PubMed  Google Scholar 

  18. Kurz, M. J., and J. G. Hou. Levodopa influences the regularity of the ankle joint kinematics in individuals with Parkinson’s disease. J. Comput. Neurosci. 28:131–136, 2010.

    Article  PubMed  Google Scholar 

  19. Lake, D. E., J. S. Richman, M. P. Griffin, and J. R. Moorman. Sample entropy analysis of neonatal heart rate variability. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283:R789–R797, 2002.

    PubMed  CAS  Google Scholar 

  20. Lamoth, C. J. C., E. Ainsworth, W. Polomski, and H. Houdijk. Variability and stability analysis of walking of transfemoral amputees. Med. Eng. Phys. 32:1009–1014, 2010.

    Article  PubMed  Google Scholar 

  21. Lamoth, C. J., F. J. van Deudekom, J. P. van Campen, B. A. Appels, O. J. de Vries, and M. Pijnappels. Gait stability and variability measures show effects of impaired cognition and dual tasking in frail people. J. Neuroeng. Rehabil. 8:2, 2011.

    Article  PubMed  Google Scholar 

  22. Lipsitz, L. A. Dynamics of stability: the physiologic basis of functional health and frailty. J. Gerontol. A Biol. Sci. Med. Sci. 57:115–125, 2002.

    Article  Google Scholar 

  23. Lipsitz, L. A., and A. L. Goldberger. Loss of ‘complexity’ and aging. Potential applications of fractals and chaos theory to senescence. JAMA 267:1806–1809, 1992.

    Article  PubMed  CAS  Google Scholar 

  24. Liu, C., C. Liu, P. Shao, L. Li, X. Sun, X. Wang, and F. Liu. Comparison of different threshold values r for approximate entropy: application to investigate the heart rate variability between heart failure and healthy control groups. Physiol. Meas. 32:167–180, 2011.

    Article  PubMed  Google Scholar 

  25. Lu, S., X. Chen, J. Kanters, I. C. Solomon, and K. H. Chon. Automatic selection of the threshold value R for approximate entropy. IEEE Trans. Biomed. Eng. 55:1966–1972, 2008.

    Article  PubMed  Google Scholar 

  26. Mayer-Kress, G., Y. Liu, and K. M. Newell. Complex systems and human movement. Complexity 12:40–51, 2006.

    Article  Google Scholar 

  27. Molina-Picó, A., D. Cuesta-Frau, M. Aboy, C. Crespo, P. Miró-Martínez, and S. Oltra-Crespo. Comparative study of approximate entropy and sample entropy robustness to spikes. Artif. Intell. Med. 53:97–106, 2011.

    Article  PubMed  Google Scholar 

  28. Myers, S. A., N. Stergiou, I. I. Pipinos, and J. M. Johanning. Gait variability patterns are altered in healthy young individuals during the acute reperfusion phase of ischemia-reperfusion. J. Surg. Res. 164:6–12, 2010.

    Article  PubMed  Google Scholar 

  29. Pincus, S. Approximate entropy as a measure of system-complexity. Proc. Natl Acad. Sci. U.S.A. 88:2297–2301, 1991.

    Article  PubMed  CAS  Google Scholar 

  30. Pincus, S. Approximate entropy (ApEn) as a complexity measure. Chaos 5:110–117, 1995.

    Article  PubMed  Google Scholar 

  31. Pincus, S., and W. Huang. Approximate entropy—statistical properties and applications. Commun. Stat. Theory Methods 21:3061–3077, 1992.

    Article  Google Scholar 

  32. Rathleff, M. S., A. Samani, C. G. Olesen, U. G. Kersting, and P. Madeleine. Inverse relationship between the complexity of midfoot kinematics and muscle activation in patients with medial tibial stress syndrome. J. Electromyogr. Kinesiol. 21:638–644, 2011.

    Article  PubMed  CAS  Google Scholar 

  33. Rhea, C. K., T. A. Silver, S. L. Hong, J. H. Ryu, B. E. Studenka, C. M. L. Hughes, and J. M. Haddad. Noise and complexity in human postural control: interpreting the different estimations of entropy. PLoS ONE 6:e17696, 2011.

    Article  PubMed  CAS  Google Scholar 

  34. Richman, J. S., and J. R. Moorman. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278:H2039–H2049, 2000.

    PubMed  CAS  Google Scholar 

  35. Rose, M. H., T. Bandholm, and B. R. Jensen. Approximate entropy based on attempted steady isometric contractions with the ankle dorsal- and plantarflexors: reliability and optimal sampling frequency. J. Neurosci. Methods 177:212–216, 2009.

    Article  PubMed  Google Scholar 

  36. Sarlabous, L., A. Torres, J. A. Fiz, J. Gea, J. Martinez-Llorens, J. Morera, and R. Jane. Interpretation of the approximate entropy using fixed tolerance values as a measure of amplitude variations in biomedical signals. Conf. Proc. IEEE Eng. Med. Biol. Soc. 5967–5970:2010, 2010.

    Google Scholar 

  37. Smith, B. A., C. Teulier, J. Sansom, N. Stergiou, and B. D. Ulrich. Approximate entropy values demonstrate impaired neuromotor control of spontaneous leg activity in infants with myelomeningocele. Pediatr. Phys. Ther. 23:241–247, 2011.

    Article  PubMed  Google Scholar 

  38. Sosnoff, J. J., M. D. Goldman, and R. W. Motl. Real-life walking impairment in multiple sclerosis: preliminary comparison of four methods for processing accelerometry data. Mult. Scler. 16:868–877, 2010.

    Article  PubMed  Google Scholar 

  39. Stergiou, N., R. Harbourne, and J. Cavanaugh. Optimal movement variability: a new theoretical perspective for neurologic physical therapy. J. Neurol. Phys. Ther. 30:120–129, 2006.

    PubMed  Google Scholar 

  40. Turnock, M. J. E., and C. S. Layne. Variations in linear and nonlinear postural measurements under achilles tendon vibration and unstable support-surface conditions. J. Mot. Behav. 42:61–69, 2010.

    Article  PubMed  Google Scholar 

  41. Wolf, A., J. B. Swift, H. L. Swinney, and J. A. Vastano. Determining Lyapunov exponents from a time-series. Physica D 16:285–317, 1985.

    Article  Google Scholar 

Download references

Acknowledgments

Funding was provided by the NASA Nebraska Space Grant & EPSCoR, Patterson Fellowship through the University of Nebraska Medical Center and NIH/NIA (R01AG034995).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Stergiou.

Additional information

Associate Editor Thurmon E. Lockhart oversaw the review of this article.

Appendix

Appendix

In order to understand the stabilization of entropy values as N increased in theoretical data, the chaotic logistic map was subjected to entropy analysis up to an N of 10,000 data points. For this particular analysis, an m of 2 and r of 0.2 times the standard deviation of the time series were chosen, as they are the most popular choice in past and current literature. Using the same procedures as outlined in the methods above, SampEn and ApEn were quantified on generated data from 100 to 10,000 data points, in increments of 100. As can be seen in Fig. 10, the entropy values for both SampEn and ApEn stabilize around an N of 2000.

Figure 10
figure 10

The ApEn and SampEn values are plotted for the chaotic logistic map using an m of 2 and r of 0.2. The entropy values were calculated for data of lengths 100–10,000 increasing in increments of 100. Based on this figure, it appears that the entropy values stabilize around an N of 2000

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yentes, J.M., Hunt, N., Schmid, K.K. et al. The Appropriate Use of Approximate Entropy and Sample Entropy with Short Data Sets. Ann Biomed Eng 41, 349–365 (2013). https://doi.org/10.1007/s10439-012-0668-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0668-3

Keywords

Navigation