Skip to main content
Log in

SNARC for numerosities is modulated by comparative instruction (and resembles some non-numerical effects)

  • Research Report
  • Published:
Cognitive Processing Aims and scope Submit manuscript

Abstract

The spatial–numerical association of response codes (SNARC) effect is observed for both numerical (Arabic digits) and non-numerical stimuli (size, duration, height). However, in a context of comparative judgment, Arabic numbers are mapped onto space differently from sizes and heights: SNARC for Arabic digits is formed consistently in a certain cultural reading direction, whereas SNARC for sizes and heights is additionally modulated by comparative instruction (it reverses when participants choose larger magnitudes). In the present study, we test whether the spatial characteristic of magnitude processing revealed in a context of comparison is determined by a presence or lack of numerical content of the processed information, or it depends on specific directional experience (e.g., left-to-right ordering) associated with the processed magnitude format. We examine the SNARC effect with the pairwise comparison design, by using non-symbolic numerical stimuli (objects’ collections), for which the left-to-right spatial structure is not as exceedingly overlearned as for Arabic numbers. We asked participants from two reading cultures (left-to-right vs. mixed reading culture) to compare numerosities of two sets, choosing either a larger or smaller one. SNARC emerged in both groups. Additionally, it was modulated by comparative instruction: It appeared in a left-to-right direction when participants selected a smaller set, but it tended to reverse when participants selected a larger set. We conclude that spatial processing of numerosities is dissociated from spatial processing of Arabic numbers, at least in a context of comparative judgment. This dissociation could reflect differences in spatial ordering experience specific to a certain numerical input.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Notes

  1. We have used the difference score (RTs for the right hand–RTs for the left hand) instead of raw RTs as a dependent variable (cf. Patro & Haman, 2012 for analyzing raw RTs) to illustrate better the common way of looking at SNARC effects. Left-to-right SNARC is usually operationalized as a negative slope of the regression line obtained by regressing difference in RTs between right- and left-hand responses on numerical magnitudes. Although we do not use this regression method in our analyses, we can still examine whether and how spatial response bias changes gradually as a function of magnitude of numerical pairs (i.e., whether the difference score gets smaller/more negative for large numerical pairs as compared to small numerical pairs).

  2. We interpret the difference in SNARC patterns between two language groups, revealed in error analysis, with caution. This is because the reduced SNARC in the Israeli group could be just an artifact caused by the lack of systematic variance associated with very low error rate in this group. Note that errors produced by Israeli participants constituted only 0.7 % of all the responses, whereas errors produced by Polish participants constituted 1.5 % of the responses (see Table 2 for details).

References

  • Bächtold D, Baumüller M, Brugger P (1998) Stimulus–response compatibility in representational space. Neuropsychologia 36:731–735

    Article  PubMed  Google Scholar 

  • Buckley PB, Gillman CB (1974) Comparisons of digits and dot patterns. J Exp Psychol 103:1131

    Article  CAS  PubMed  Google Scholar 

  • Bulf H, Macchi Cassia V, de Hevia MD (2014) Are numbers, size and brightness equally efficient in orienting visual attention? Evidence from an eye-tracking study. PLoS ONE 9:e99499

    Article  PubMed  PubMed Central  Google Scholar 

  • Cantlon JF, Platt ML, Brannon EM (2009) Beyond the number domain. Trend Cogn Sci 13:83–91

    Article  Google Scholar 

  • Chen Q, Verguts T (2010) Beyond the mental number line: a neural network model of number–space interactions. Cognitive Psychol 60:218–240

    Article  Google Scholar 

  • Cohen Kadosh R, Walsh V (2009) Numerical representation in the parietal lobes: abstract or not abstract? Behav Brain Sci 32:313–328

    Article  PubMed  Google Scholar 

  • Cohen Kadosh R, Lammertyn J, Izard V (2008) Are numbers special? An overview of chronometric, neuroimaging, developmental and comparative studies of magnitude representation. Prog Neurobiol 84:132–147

    Article  PubMed  Google Scholar 

  • Cordes S, Brannon EM (2008) Quantitative competencies in infancy. Dev Sci 11:803–808

    Article  PubMed  Google Scholar 

  • De Smedt B, Noël MP, Gilmore C, Ansari D (2013) How do symbolic and non-symbolic numerical magnitude processing skills relate to individual differences in children’s mathematical skills? A review of evidence from brain and behavior. Trends Neurosci Educ 2:48–55

    Article  Google Scholar 

  • De Hevia MD, Girelli L, Addabbo M, Macchi Cassia V (2014) Human infants’ preference for left-to-right oriented increasing numerical sequences. PloS One 9:e96412

    Article  PubMed  PubMed Central  Google Scholar 

  • Dehaene S (1992) Varieties of numerical abilities. Cognition 44:1–42

    Article  CAS  PubMed  Google Scholar 

  • Dehaene S (1997) The number sense: how the mind creates mathematics. Oxford University Press, New York

    Google Scholar 

  • Dehaene S, Cohen L (1995) Towards an anatomical and functional model of number processing. Math Cogn 1:83–120

    Google Scholar 

  • Dehaene S, Bossini S, Giraux P (1993) The mental representation of parity and number magnitude. J Exp Psychol Gen 122:371

    Article  Google Scholar 

  • Dehaene S, Dehaene-Lambertz G, Cohen L (1998) Abstract representations of numbers in the animal and human brain. Trends Neurosci 21:355–361

    Article  CAS  PubMed  Google Scholar 

  • Dehaene S, Piazza M, Pinel P, Cohen L (2003) Three parietal circuits for number processing. Cogn Neuropsychol 20:487–506

    Article  PubMed  Google Scholar 

  • Ebersbach M, Luwel K, Verschaffel L (2014) Further evidence for a spatial-numerical association in children before formal schooling. Exp Psychol 61:323–329

    Article  PubMed  Google Scholar 

  • Feigenson L, Dehaene S, Spelke E (2004) Core systems of number. Trends Cogn Sci 8:307–314

    Article  PubMed  Google Scholar 

  • Feigenson L, Libertus ME, Halberda J (2013) Links between the intuitive sense of number and formal mathematics ability. Child Dev Perspect 7:74–79

    Article  PubMed  PubMed Central  Google Scholar 

  • Fias W, Brysbaert M, Geypens F, d’Ydewalle G (1996) The importance of magnitude information in numerical processing: evidence from the SNARC effect. Math Cogn 2:95–110

    Article  Google Scholar 

  • Fias W, van Dijck JP, Gevers W (2011) How number is associated with space?: the role of working memory. In: Dehaene S, Brannon E (eds) Space, time and number in the brain—searching for evolutionary foundations of mathematical thought: attention and performance XXIV. Elsevier, Amsterdam, pp 133–148

    Chapter  Google Scholar 

  • Fischer MH, Shaki S (2014) Spatial associations in numerical cognition—from single digits to arithmetic. Q J Exp Psychol 67:1461–1483

    Article  Google Scholar 

  • Fischer MH, Shaki S (2015) Measuring spatial-numerical associations: evidence for a purely conceptual link. Psychol Res (ahead of print)

  • Fischer MH, Shaki S, Cruise A (2009) It takes only one word to quash the SNARC. Exp Psychol 56:361–366

    Article  PubMed  Google Scholar 

  • Fischer MH, Mills RA, Shaki S (2010) How to cook a SNARC: number placement in text rapidly changes spatial-numerical associations. Brain Cogn 72:333–336

    Article  PubMed  Google Scholar 

  • Fumarola A, Prpic V, Da Pos O, Murgia M, Umiltà C, Agostini T (2014) Automatic spatial association for luminance. Atten Percept Psychophys 76:759–765

    Article  PubMed  Google Scholar 

  • Gallistel CR, Gelman R (2000) Non-verbal numerical cognition: from reals to integers. Trends Cogn Sci 4:59–65

    Article  PubMed  Google Scholar 

  • Gebuis T, Reynvoet B (2012) The role of visual information in numerosity estimation. PLoS ONE 7:e37426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gevers W, Lammertyn J (2005) The hunt for SNARC. Psychol Sci 47:10–21

    Google Scholar 

  • Gevers W, Reynvoet B, Fias W (2003) The mental representation of ordinal sequences is spatially organized. Cognition 87:B87–B95

    Article  PubMed  Google Scholar 

  • Gevers W, Reynvoet B, Fias W (2004) The mental representation of ordinal sequences is spatially organised: evidence from days of the week. Cortex 40:171–172

    Article  PubMed  Google Scholar 

  • Gilmore CK, McCarthy SE, Spelke ES (2010) Non-symbolic arithmetic abilities and mathematics achievement in the first year of formal schooling. Cognition 115:394–406

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilmore C, Attridge N, Clayton S, Cragg L, Johnson S, Marlow N, Simms V, Inglis M (2013) Individual differences in inhibitory control, not non-verbal number acuity, correlate with mathematics achievement. PLoS ONE 8:e67374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishihara M, Keller PE, Rossetti Y, Prinz W (2008) Horizontal spatial representations of time: evidence for the STEARC effect. Cortex 44:454–461

    Article  PubMed  Google Scholar 

  • Jordan KE, Brannon EM (2006) A common representational system governed by Weber’s law: nonverbal numerical similarity judgments in 6-year-olds and rhesus macaques. J Exp Child Psychol 95:215–229

    Article  PubMed  Google Scholar 

  • Le Corre M, Carey S (2007) One, two, three, four, nothing more: an investigation of the conceptual sources of the verbal counting principles. Cognition 105:395–438

    Article  PubMed  Google Scholar 

  • Libertus ME, Feigenson L, Halberda J (2011) Preschool acuity of the approximate number system correlates with school math ability. Dev Sci 14:1292–1300

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindemann O, Abolafia JM, Pratt J, Bekkering H (2008) Coding strategies in number space: memory requirements influence spatial–numerical associations. Q J Exp Psychol 61:515–524

    Article  Google Scholar 

  • Luccio R, Fumarola A, Tamburini G, Agostini T (2012) The spatial representation of non-symbolic numerical quantities. Proc Fechner Day 28:321–327

    Google Scholar 

  • Mitchell T, Bull R, Cleland AA (2012) Implicit response-irrelevant number information triggers the SNARC effect: evidence using a neural overlap paradigm. Q J Exp Psychol 65:1945–1961

    Article  Google Scholar 

  • Nathan MB, Shaki S, Salti M, Algom D (2009) Numbers and space: associations and dissociations. Psychon Bull Rev 16:578–582

    Article  PubMed  Google Scholar 

  • Nuerk HC, Wood G, Willmes K (2005) The universal SNARC effect. Exp Psychol 52:187–194

    Article  PubMed  Google Scholar 

  • Park J, Brannon EM (2013) Training the approximate number system improves math proficiency. Psychol Sci 24:2013–2019

    Article  PubMed  PubMed Central  Google Scholar 

  • Patro K, Haman M (2012) The spatial–numerical congruity effect in preschoolers. J Exp Child Psychol 111:534–542

    Article  PubMed  Google Scholar 

  • Piazza M (2010) Neurocognitive start-up tools for symbolic number representations. Trends Cogn Sci 14:542–551

    Article  PubMed  Google Scholar 

  • Platt JR, Johnson DM (1971) Localization of position within a homogeneous behavior chain: effects of error contingencies. Learn Motiv 2:386–414

    Article  Google Scholar 

  • Previtali P, de Hevia MD, Girelli L (2010) Placing order in space: the SNARC effect in serial learning. Exp Brain Res 201:599–605

    Article  PubMed  Google Scholar 

  • Price GR, Palmer D, Battista C, Ansari D (2012) Nonsymbolic numerical magnitude comparison: reliability and validity of different task variants and outcome measures, and their relationship to arithmetic achievement in adults. Acta Psychol 140:50–57

    Article  Google Scholar 

  • Rashidi-Ranjbar N, Goudarzvand M, Jahangiri S, Brugger P, Loetscher T (2014) No horizontal numerical mapping in a culture with mixed-reading habits. Front Hum Neurosci 8:72

    Article  PubMed  PubMed Central  Google Scholar 

  • Ren P, Nicholls ME, Ma YY, Chen L (2011) Size matters: non-numerical magnitude affects the spatial coding of response. PLoS ONE 6:e23553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rugani R, Vallortigara G, Priftis K, Regolin L (2015) Number-space mapping in the newborn chick resembles humans’ mental number line. Science 347:534–536

    Article  CAS  PubMed  Google Scholar 

  • Rusconi E, Kwan B, Giordano BL, Umilta C, Butterworth B (2006) Spatial representation of pitch height: the SMARC effect. Cognition 99:113–129

    Article  PubMed  Google Scholar 

  • Sasanguie D, Göbel SM, Moll K, Smets K, Reynvoet B (2013) Approximate number sense, symbolic number processing, or number–space mappings: What underlies mathematics achievement? J Exp Child Psychol 114:418–431

    Article  PubMed  Google Scholar 

  • Sasanguie D, Defever E, Maertens B, Reynvoet B (2014) The approximate number system is not predictive for symbolic number processing in kindergarteners. Q J Exp Psychol 67:271–280

    Article  Google Scholar 

  • Shaki S, Fischer MH (2008) Reading space into numbers—a cross-linguistic comparison of the SNARC effect. Cognition 108:590–599

    Article  PubMed  Google Scholar 

  • Shaki S, Gevers W (2011) Cultural characteristics dissociate magnitude and ordinal information processing. J Cross Cult Psychol 42:639–650

    Article  Google Scholar 

  • Shaki S, Petrusic WM (2005) On the mental representation of negative numbers: context-dependent SNARC effects with comparative judgments. Psychon Bull Rev 12:931–937

    Article  PubMed  Google Scholar 

  • Shaki S, Fischer MH, Petrusic WM (2009) Reading habits for both words and numbers contribute to the SNARC effect. Psychon Bull Rev 16:328–331

    Article  PubMed  Google Scholar 

  • Shaki S, Petrusic WM, Leth-Steensen C (2012) SNARC effects with numerical and non-numerical symbolic comparative judgments: instructional and cultural dependencies. J Exp Psychol Hum Percept Perform 38:515–530

    Article  PubMed  Google Scholar 

  • Szűcs D, Nobes A, Devine A, Gabriel FC, Gebuis T (2013) Visual stimulus parameters seriously compromise the measurement of approximate number system acuity and comparative effects between adults and children. Frontiers in Psychology 4:444

    PubMed  PubMed Central  Google Scholar 

  • Vallesi A, Binns MA, Shallice T (2008) An effect of spatial–temporal association of response codes: understanding the cognitive representations of time. Cognition 107:501–527

    Article  PubMed  Google Scholar 

  • Vallesi A, Weisblatt Y, Semenza C, Shaki S (2014) Cultural modulations of space–time compatibility effects. Psychon Bull Rev 21:666–669

    Article  PubMed  Google Scholar 

  • van Dijck JP, Fias W (2011) A working memory account for spatial–numerical associations. Cognition 119:114–119

    Article  PubMed  Google Scholar 

  • van Elk M, van Schie HT, Bekkering H (2010) From left to right: processing acronyms referring to names of political parties activates spatial associations. Q J Exp Psychol 63:2202–2219

    Article  Google Scholar 

  • Van Opstal F, Verguts T (2013) Is there a generalized magnitude system in the brain? Behavioral, neuroimaging, and computational evidence. Front Psychol 4:435

    PubMed  PubMed Central  Google Scholar 

  • Vicario CM, Rumiati RI (2014) Left-right compatibility in the processing of trading verbs. Front Behav Neurosci 8:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Walsh V (2003) A theory of magnitude: common cortical metrics of time, space and quantity. Trend Cogn Sci 7:483–488

    Article  Google Scholar 

  • Wood G, Willmes K, Nuerk HC, Fischer MH (2008) On the cognitive link between space and number: a meta-analysis of the SNARC effect. Psychol Sci Q 50:489

    Google Scholar 

  • Wynn K (1992) Children’s acquisition of the number words and the counting system. Cogn Psychol 24:220–251

    Article  Google Scholar 

  • Xu F, Spelke ES (2000) Large number discrimination in 6-month-old infants. Cognition 74:B1–B11

    Article  CAS  PubMed  Google Scholar 

  • Xu F, Spelke ES, Goddard S (2005) Number sense in human infants. Dev Sci 8:88–101

    Article  PubMed  Google Scholar 

  • Yates M, Nemeh F, Loetscher T, Ma-Wyatt A, Nicholls ME (2013) Numerosity is represented spatially: evidence from a ‘SNARC’ task. Perception 42:132–133

    Google Scholar 

  • Zebian S (2005) Linkages between number concepts, spatial thinking, and directionality of writing: the SNARC effect and the reverse SNARC effect in English and Arabic monoliterates, biliterates, and illiterate Arabic speakers. J Cogn Cult 5:165–190

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Patro.

Additional information

Handling Editor: Thomas F. Shipley, Temple University, Philadelphia, USA.

Reviewers: Liz Gunderson, Temple University, USA; Ilyse Resnick, University of Delaware, Newark, USA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patro, K., Shaki, S. SNARC for numerosities is modulated by comparative instruction (and resembles some non-numerical effects). Cogn Process 17, 127–137 (2016). https://doi.org/10.1007/s10339-015-0745-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10339-015-0745-2

Keywords

Navigation