Skip to main content
Log in

Neural representations of motor plans, desired trajectories, and controlled objects

  • Review
  • Published:
Cognitive Processing Aims and scope Submit manuscript

Abstract

Traditional theories of motor control view it as a serial process of planning and execution situated at the end of a larger serial process of perceptual representation and cognitive decision-making. Here, I examine the assumption that “planning” and “execution” are distinct processes separated by a neural representation of a “desired trajectory”. I propose that neural data do not support the existence of a desired trajectory or of any pre-generated plan other than a crude representation of the intended motion of a controlled object. That representation appears to be more strongly involved in decision-making processes than in the control of a specific movement, and it does not appear to be converted into a detailed motor command until after the movement begins, even in well-trained tasks. Thus, one is led to question whether the traditional distinction between decision-making, planning, and motor execution is a useful foundation for interpreting neural data and generating computational theories of motor control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abend W, Bizzi E, Morasso PG (1982) Human arm trajectory formation. Brain 105:331–348

    CAS  PubMed  Google Scholar 

  • Ajemian R, Bullock D, Grossberg S (2000) Kinematic coordinates in which motor cortical cells encode movement direction. J Neurophysiol 84:2191–2203

    Google Scholar 

  • Ajemian R, Bullock D, Grossberg S (2001) A model of movement coordinates in the motor cortex: posture-dependent changes in the gain and direction of single cell tuning curves. Cereb Cortex 11:1124–1135

    Article  Google Scholar 

  • Albus JS (1971) A theory of cerebellar function. Math Biosci 10:25–61

    Article  Google Scholar 

  • Alexander GE, Crutcher MD (1990) Preparation for movement: neural representations of intended direction in three motor areas of the monkey. J Neurophys 64:133–150

    CAS  PubMed  Google Scholar 

  • Alexander GE, Delong MR, Crutcher MD (1992) Do cortical and basal ganglionic motor areas use “motor programs” to control movement? Behav Brain Sci 15:656–665

    Google Scholar 

  • Andersen RA (1995) Encoding of intention and spatial location in the posterior parietal cortex. Cereb Cortex 5:457–469

    Google Scholar 

  • Ashe J, Georgopoulos AP (1994) Movement parameters and neural activity in motor cortex and area 5. Cereb Cortex 4:590–600

    Google Scholar 

  • Atkeson CG, Hollerbach JM (1985) Kinematic features of unrestrained vertical arm movements. J Neurosci 5:2318–2330

    CAS  PubMed  Google Scholar 

  • Basso MA, Wurtz RH (1998) Modulation of neuronal activity in superior colliculus by changes in target probability. J Neurosci 18:7519–7534

    Google Scholar 

  • Bhushan N, Shadmehr R (1999) Computational nature of human adaptive control during learning of reaching movements in force fields. Biol Cybern 81:39–60

    Article  CAS  PubMed  Google Scholar 

  • Bizzi E, Accornero N, Chapple W, Hogan N (1984) Posture control and trajectory formation during arm movement. J Neurosci 4:2738–2744

    Google Scholar 

  • Bizzi E, Hogan N, Mussa-Ivaldi FA, Giszter SF (1992) Does the nervous system use equilibrium-point control to guide single and multiple joint movements? Behav Brain Sci 15:603–613

    Google Scholar 

  • Bizzi E, Tresch MC, Saltiel P, d’Avella A (2000) New perspectives on spinal motor systems. Nat Rev Neurosci 1:101–108

    Article  CAS  PubMed  Google Scholar 

  • Bullock D, Grossberg S (1988) Neural dynamics of planned arm movements: emergent invariants and speed-accuracy properties during trajectory formation. Psychol Rev 95:49–90

    Article  Google Scholar 

  • Bullock D, Cisek P, Grossberg S (1998) Cortical networks for control of voluntary arm movements under variable force conditions. Cereb Cortex 8:48–62

    Article  Google Scholar 

  • Buneo CA, Jarvis MR, Batista AP, Andersen RA (2002) Direct visuomotor transformations for reaching. Nature 416:632–636

    Article  CAS  PubMed  Google Scholar 

  • Butler AB, Hodos W (1996) Comparative vertebrate neuroanatomy: evolution and adaptation. Wiley-Liss, New York

    Google Scholar 

  • Cisek P (1999) Beyond the computer metaphor: behaviour as interaction. J Conscious Stud 6:125–142

    Google Scholar 

  • Cisek P (2001) Embodiment is all in the head. Behav Brain Sci 24:36–38

    Google Scholar 

  • Cisek P, Kalaska JF (2001) Activity in dorsal premotor cortex (PMd) reflects anticipation of the likely response choice during a selection task (abstract). Soc Neurosci Abstracts 27

  • Cisek P, Kalaska JF (2002) Simultaneous encoding of multiple potential reach directions in dorsal premotor cortex. J Neurophysiol 87:1149–1154

    Google Scholar 

  • Cisek P, Kalaska JF (2004) Neural correlates of mental rehearsal in dorsal premotor cortex. Nature 431:993–996

    Google Scholar 

  • Cisek P, Kalaska JF (2005) Neural correlates of reaching decisions in dorsal premotor cortex: specification of multiple direction choices and final selection of action. Neuron (in press)

    Google Scholar 

  • Cisek P, Turgeon M (1999) ’Binding through the fovea’, a tale of perception in the service of action. Psyche 5(34)

  • Cisek P, Grossberg S, Bullock D (1998) A cortico-spinal model of reaching and proprioception under multiple task constraints. J Cogn Neurosci 10:425–444

    Article  Google Scholar 

  • Cisek P, Crammond DJ, Kalaska JF (2003) Neural activity in primary motor and dorsal premotor cortex in reaching tasks with the contralateral versus ipsilateral arm. J Neurophysiol 89:922–942

    Google Scholar 

  • Cisek P, Michaud N, Kalaska JF (2004) Integration of motor planning and sensory feedback in area 5. Soc Neurosci Abstr 30

    Google Scholar 

  • Crammond DJ, Kalaska JF (2000) Prior information in motor and premotor cortex: activity during the delay period and effect on pre-movement activity. J Neurophysiol 84:986–1005

    CAS  PubMed  Google Scholar 

  • Deacon TW (1990) Rethinking mammalian brain evolution. Am Zool 30:629–705

    Google Scholar 

  • Desmurget M, Epstein CM, Turner RS, Prablanc C, Alexander GE, Grafton ST (1999) Role of the posterior parietal cortex in updating reaching movements to a visual target. Nat Neurosci 2:563–567

    Article  Google Scholar 

  • Domkin D, Laczko J, Jaric S, Johansson H, Latash ML (2002) Structure of joint variability in bimanual pointing tasks. Exp Brain Res 143:11–23

    Article  PubMed  Google Scholar 

  • Donchin O, Gribova A, Steinberg O, Bergman H, Vaadia E (1998) Primary motor cortex is involved in bimanual coordination. Nature 395:274–278

    Article  CAS  PubMed  Google Scholar 

  • Evarts EV (1968) Relation of pyramidal tract activity to force exerted during voluntary movement. J Neurophysiol 31:14–27

    Google Scholar 

  • Feldman AG (1986) Once more on the equilibrium-point hypothesis (lambda model) for motor control. J Motor Behav 18:17–54

    CAS  Google Scholar 

  • Fetz EE (1992) Are movement parameters recognizably coded in the activity of single neurons? Behav Brain Sci 15:679–690

    Google Scholar 

  • Flanagan JR, Wing AM (1997) The role of internal models in motion planning and control: evidence from grip force adjustments during movements of hand-held loads. J Neurosci 17:1519–1528

    CAS  PubMed  Google Scholar 

  • Flash T, Hogan N (1985) The coordination of arm movements: an experimentally confirmed mathematical model. J Neurosci 5:1688–1703

    CAS  PubMed  Google Scholar 

  • Georgopoulos AP (1995) Current issues in directional motor control. Trends Neurosci 18:506–510

    Article  CAS  PubMed  Google Scholar 

  • Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT (1982) On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J Neurosci 2:1527–1537

    CAS  PubMed  Google Scholar 

  • Georgopoulos AP, Caminiti R, Kalaska JF, Massey JT (1983) Spatial coding of movement: a hypothesis concerning the coding of movement direction by motor cortical populations. Exp Brain R (Suppl) 7:327–336

    Google Scholar 

  • Georgopoulos AP, Kettner RE, Schwartz AB (1988) Primate motor cortex and free arm movements to visual targets in three-dimensional space. II. Coding of the direction of arm movement by a neural population. J Neurosci 8:2928–2937

    CAS  PubMed  Google Scholar 

  • Glimcher PW (2003) The neurobiology of visual-saccadic decision making. Annu Rev Neurosci 26:133–179

    Article  Google Scholar 

  • Glimcher PW, Sparks DL (1992) Movement selection in advance of action in the superior colliculus. Nature 355:542–545

    Article  CAS  PubMed  Google Scholar 

  • Gold JI, Shadlen MN (2000) Representation of a perceptual decision in developing oculomotor commands. Nature 404:390–394

    Google Scholar 

  • Gold JI, Shadlen MN (2003) The influence of behavioral context on the representation of a perceptual decision in developing oculomotor commands. J Neurosci 23:632–651

    Google Scholar 

  • Gordon J, Ghilardi MF, Cooper SE, Ghez C (1994) Accuracy of planar reaching movements: II. Systematic extent errors resulting from inertial anisotropy. Exp Brain Res 99:112–130

    CAS  PubMed  Google Scholar 

  • Gribble PL, Scott SH (2002) Overlap of internal models in motor cortex for mechanical loads during reaching. Nature 417:938–941

    Article  CAS  PubMed  Google Scholar 

  • Grossberg S (1969) On learning of spatiotemporal patterns by networks with ordered sensory and motor components. I. Excitatory components of the cerebellum. Stud Appl Math 48:105–132

    Google Scholar 

  • Harris CM, Wolpert DM (1998) Signal-dependent noise determines motor planning. Nature 394:780–784

    Article  CAS  PubMed  Google Scholar 

  • Hernandez A, Zainos A, Romo R (2002) Temporal evolution of a decision-making process in medial premotor cortex. Neuron 33:959–972

    Article  Google Scholar 

  • Holland LZ, Holland ND (1999) Chordate origins of the vertebrate central nervous system. Curr Opin Neurobiol 9:596–602

    Article  Google Scholar 

  • Horwitz GD, Batista AP, Newsome WT (2004) Representation of an abstract perceptual decision in macaque superior colliculus. J Neurophysiol 91:2281–2296

    Article  Google Scholar 

  • Hoshi E, Tanji J (2000) Integration of target and body-part information in the premotor cortex when planning action. Nature 408:466–470

    Article  CAS  PubMed  Google Scholar 

  • Hoshi E, Tanji J (2002) Contrasting neuronal activity in the dorsal and ventral premotor areas during preparation to reach. J Neurophysiol 87:1123–1128

    PubMed  Google Scholar 

  • Imamizu H, Miyauchi S, Tamada T, Sasaki Y, Takino R, Pütz B, Yoshioka T, Kawato M (2000) Human cerebellar activity reflecting an acquired internal model of a new tool. Nature 403:192–195

    Article  CAS  PubMed  Google Scholar 

  • Ito M (1984) The cerebellum and neural control. Raven, New York

    Google Scholar 

  • Johnson PB, Ferraina S, Bianchi L, Caminiti R (1996) Cortical networks for visual reaching: physiological and anatomical organization of frontal and parietal arm regions. Cereb Cortex 6:102–119

    Google Scholar 

  • Jordan MI, Rumelhart DE (1992) Forward models: supervised learning with a distal teacher. Cogn Sci 16:307–354

    Article  Google Scholar 

  • Kalaska JF, Crammond DJ (1992) Cerebral cortical mechanisms of reaching movements. Science 255:1517–1523

    CAS  PubMed  Google Scholar 

  • Kalaska JF, Crammond DJ (1995) Deciding not to GO: neuronal correlates of response selection in a GO/NOGO task in primate premotor and parietal cortex. Cereb Cortex 5:410–428

    PubMed  Google Scholar 

  • Kalaska JF, Cohen DAD, Hyde ML, Prud’homme MJ (1989) A comparison of movement direction-related versus load direction-related activity in primate motor cortex, using a two-dimensional reaching task. J Neurosci 9:2080–2102

    Google Scholar 

  • Kalaska JF, Sergio LE, Cisek P (1998) Cortical control of whole-arm motor tasks. In: Glickstein M (ed) Sensory guidance of movement, Novartis foundation symposium #218. Wiley, Chichester, pp 176–201

    Google Scholar 

  • Karst GM, Hasan Z (1991) Initiation rules for planar, two-joint arm movements: agonist selection for movements throughout the work space. J Neurophys 66:1579–1593

    CAS  PubMed  Google Scholar 

  • Katz PS, Harris-Warrick RM (1999) The evolution of neuronal circuits underlying species-specific behavior. Curr Opin Neurobiol 9:628–633

    Article  CAS  PubMed  Google Scholar 

  • Kawato M, Gomi H (1992) The cerebellum and VOR/OKR learning models. Trends Neurosci 15:445–453

    Article  Google Scholar 

  • Kim JN, Shadlen MN (1999) Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque. Nat Neurosci 2:176–185

    Article  PubMed  Google Scholar 

  • Krakauer JW, Ghilardi MF, Ghez C (1999) Independent learning of internal models for kinematic and dynamic control of reaching. Nat Neurosci 2:1026–1031

    Article  CAS  PubMed  Google Scholar 

  • Kurata K (1993) Premotor cortex of monkeys: set- and movement-related activity reflecting amplitude and direction of wrist movements. J Neurophys 69:187–200

    CAS  PubMed  Google Scholar 

  • Lackner JR, DiZio P (1994) Rapid adaptation to Coriolis force perturbations of arm trajectory. J Neurophysiol 72:299–313

    CAS  PubMed  Google Scholar 

  • Latash ML, Gottlieb GL (1991) An equilibrium-point model for fast, single-joint movement: I. Emergence of strategy-dependent EMG patterns. J Motor Behav 23:163–177

    Google Scholar 

  • MacLean PD (1973) A triune concept of the brain and behaviour. University of Toronto Press, Toronto

    Google Scholar 

  • Marr DC (1969) A theory of cerebellar cortex. J Physiol 202:437–470

    CAS  PubMed  Google Scholar 

  • Mazurek ME, Roitman JD, Ditterich J, Shadlen MN (2003) A role for neural integrators in perceptual decision making. Cereb Cortex 13:1257–1269

    Article  Google Scholar 

  • Medina L, Reiner A (2000) Do birds possess homologues of mammalian primary visual, somatosensory and motor cortices?. Trends Neurosci 23:1–12

    Article  Google Scholar 

  • Mehta B, Schaal S (2002) Forward models in visuomotor control. J Neurophys 88:942–953

    Google Scholar 

  • Miall RC, Wolpert DM (1996) Forward models for physiological motor control. Neural Netw 9:1265–1279

    Article  PubMed  Google Scholar 

  • Morasso PG (1981) Spatial control of arm movements. Exp Brain Res 42:223–227

    CAS  PubMed  Google Scholar 

  • Mussa-Ivaldi FA (1988) Do neurons in the motor cortex encode movement direction? an alternate hypothesis. Neurosci Lett 91:106–111

    Article  Google Scholar 

  • Newell A, Simon HA (1972) Human problem solving. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Pellionisz A, Llinás R (1985) Tensor network theory of the metaorganization of functional geometries in the central nervous system. Neuroscience 16:245–273

    Article  Google Scholar 

  • Platt ML, Glimcher PW (1997) Responses of intraparietal neurons to saccadic targets and visual distractors. J Neurophysiol 78:1574–1589

    Google Scholar 

  • Platt ML, Glimcher PW (1999) Neural correlates of decision variables in parietal cortex. Nature 400:233–238

    Article  CAS  PubMed  Google Scholar 

  • Polit A, Bizzi E (1978) Processes controlling arm movements in monkeys. Science 201:1235–1237

    Google Scholar 

  • Prut Y, Fetz EE (1999) Primate spinal interneurons show pre-movement instructed delay activity. Nature 401:590–594

    Article  CAS  PubMed  Google Scholar 

  • Ratcliff R, Cherian A, Segraves M (2003) A comparison of macaque behavior and superior colliculus neuronal activity to predictions from models of two-choice decisions. J Neurophysiol 90:1392–1407

    Google Scholar 

  • Riehle A, Requin J (1989) Monkey primary motor and premotor cortex: single-cell activity related to prior information about direction and extent of an intended movement. J Neurophysiol 61:534–549

    Google Scholar 

  • Roesch MR, Olson CR (2003) Impact of expected reward on neuronal activity in prefrontal cortex, frontal and supplementary eye fields and premotor cortex. J Neurophysiol 90:1766–1789

    Google Scholar 

  • Roesch MR, Olson CR (2004) Neuronal activity related to reward value and motivation in primate frontal cortex. Science 304:307–310

    Article  Google Scholar 

  • Romo R, Hernandez A, Zainos A, Lemus L, Brody CD (2002) Neuronal correlates of decision-making in secondary somatosensory cortex. Nat Neurosci 5:1217–1225

    Article  Google Scholar 

  • Romo R, Hernandez A, Zainos A (2004) Neuronal correlates of a perceptual decision in ventral premotor cortex. Neuron 41:165–173

    Article  Google Scholar 

  • Sanger TD (1994) Theoretical considerations for the analysis of population coding in motor cortex. Neural Comput 6:29–37

    Google Scholar 

  • Schall JD, Bichot NP (1998) Neural correlates of visual and motor decision processes. Curr Opin Neurobiol 8:211–217

    Article  Google Scholar 

  • Schall JD, Thompson KG (1999) Neural selection and control of visually guided eye movements. Annu Rev Neurosci 22:241–259

    Article  Google Scholar 

  • Scholz JP, Schöner G (1999) The uncontrolled manifold concept: identifying control variables for a functional task. Exp Brain Res 126:289–306

    Article  CAS  PubMed  Google Scholar 

  • Scholz JP, Danion F, Latash ML, Schöner G (2002) Understanding finger coordination through analysis of the structure of force variability. Biol Cybern 86:29–39

    Article  PubMed  Google Scholar 

  • Schwartz AB (1992) Motor cortical activity during drawing movements: single unit activity during sinusoid tracing. J Neurophysiol 68:528–541

    Google Scholar 

  • Schwartz AB (1993) Motor cortical activity during drawing movements: population representation during sinusoid tracing. J Neurophysiol 70:28–36

    Google Scholar 

  • Schweighofer N, Arbib MA, Kawato M (1998) Role of the cerebellum in reaching movements in humans. I. Distributed inverse dynamics control. Eur J Neurolsci 10:86–94

    Article  Google Scholar 

  • Scott SH (2000) Population vectors and motor cortex: neural coding or epiphenomenon?. Nat Neurosci 3:307–308

    Article  Google Scholar 

  • Scott SH, Kalaska JF (1996) Temporal changes in the effect of arm orientation on directional tuning of cells in monkey primary motor (M1) and dorsal premotor (PMd) cortex during reaching. Soc Neurosci Abstr 22

  • Scott SH, Kalaska JF (1997) Reaching movements with similar hand paths but different arm orientations. I. Activity of individual cells in motor cortex. J Neurophysiol 77:826–853

    CAS  PubMed  Google Scholar 

  • Scott SH, Gribble PL, Graham KM, Cabel DW (2001) Dissociation between hand motion and population vectors from neural activity in motor cortex. Nature 413:161–165

    Article  CAS  PubMed  Google Scholar 

  • Sergio LE, Kalaska JF (1997) Systematic changes in directional tuning of motor cortex cell activity with hand location in the workspace during generation of static isometric forces in constant spatial directions. J Neurophys 78:1170–1174

    Google Scholar 

  • Sergio LE, Kalaska JF (1998) Changes in the temporal pattern of primary motor cortex activity in a directional isometric force versus limb movement task. J Neurophysiol 80:1577–1583

    CAS  PubMed  Google Scholar 

  • Sergio LE, Kalaska JF (2003) Systematic changes in motor cortex cell activity with arm posture during directional isometric force generation. J Neurophysiol 89:212–228

    PubMed  Google Scholar 

  • Shadlen MN, Newsome WT (2001) Neural basis of a perceptual decision in the parietal cortex (area lip) of the rhesus monkey. J Neurophysiol 86:1916–1936

    Google Scholar 

  • Shadmehr R, Mussa-Ivaldi FA (1994) Adaptive representation of dynamics during learning of a motor task. J Neurosci 14:3208–3224

    CAS  PubMed  Google Scholar 

  • Shen L, Alexander GE (1997a) Neural correlates of a spatial sensory-to-motor transformation in primary motor cortex. J Neurophysiol 77:1171–1194

    CAS  PubMed  Google Scholar 

  • Shen L, Alexander GE (1997b) Preferential representation of instructed target location versus limb trajectory in dorsal premotor area. J Neurophys 77:1195–1212

    CAS  PubMed  Google Scholar 

  • Tanji J, Okano K, Sato KC (1987) Relation of neurons in the nonprimary motor cortex to bilateral hand movement. Nature 327:618–620

    Google Scholar 

  • Tanji J, Okano K, Sato KC (1988) Neuronal activity in cortical motor areas related to ipsilateral, contralateral, and bilateral digit movements of the monkey. J Neurophysiol 60:325–343

    Google Scholar 

  • Thompson KG, Hanes DP, Bichot NP, Schall JD (1996) Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. J Neurophysiol 76:4040–4055

    Google Scholar 

  • Thompson KG, Bichot NP, Schall JD (1997) Dissociation of visual discrimination from saccade programming in macaque frontal eye field. J Neurophys 77:1046–1050

    Google Scholar 

  • Todorov E, Jordan MI (2002) Optimal feedback control as a theory of motor coordination. Nat Neurosci 5:1226–1235

    Article  CAS  PubMed  Google Scholar 

  • Uno Y, Kawato M, Suzuki R (1989) Formation and control of optimal trajectory in human multijoint arm movement. Minimum torque-change model. Biol Cybern 61:89–101

    CAS  PubMed  Google Scholar 

  • Wise SP (1985) The primate premotor cortex: past, present, and preparatory. Annu Rev Neurosci 8:1–19

    Article  Google Scholar 

  • Wolpert DM, Kawato M (1998) Multiple paired forward and inverse models for motor control. Neural Netw 11:1317–1329

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Cisek.

Additional information

Communicated by Irene Ruspantini and Niels Birbaumer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cisek, P. Neural representations of motor plans, desired trajectories, and controlled objects. Cogn Process 6, 15–24 (2005). https://doi.org/10.1007/s10339-004-0046-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10339-004-0046-7

Keywords

Navigation