Skip to main content
Log in

Perception in action: multiple roles of sensory information in action control

  • Review
  • Published:
Cognitive Processing Aims and scope Submit manuscript

Abstract

Perceptual processes play a central role in the planning and control of human voluntary action. Indeed, planning an action is a sensorimotor process operating on sensorimotor units, a process that is based on anticipations of perceptual action effects. I discuss how the underlying sensorimotor units emerge, and how they can be employed to tailor action plans to the goals at hand. I also discuss how even a single action can induce sensorimotor binding, how intentionally implemented short-term associations between stimuli and responses become autonomous, how feature overlap between stimulus events and actions makes them compatible, and why action plans are necessarily incomplete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. James (1890) extended this limited-capacity logic to explain how activated action plans (i.e., the actions one “thinks of”) can be held in check: thinking of an action may indeed prime corresponding motor structures to a degree that triggers its execution unless one manages to think of another action that is incompatible with it. However, there is a theoretical alternative to this inhibitory control strategy: the execution of an action may not only require a worked-out plan to be carried out but also a go signal to eventually trigger the execution (Bullock and Grossberg 1988). Indeed, evidence from dual-task studies suggests that planning and executing an action are dissociable processes (De Jong 1993; Ivry et al. 1998; Logan and Burkell 1986).

References

  • Ach N (1910) Über den Willensakt und das Temperament [On will and temperament]. Quelle and Meyer, Leipzig

    Google Scholar 

  • Bargh JA (1989) Conditional automaticity: varieties of automatic influence in social perception and cognition. In: Uleman JS, Bargh JA (eds) Unintended thought. Guilford Press, New York, pp 3–51

    Google Scholar 

  • Beckers T, De Houwer J, Eelen P (2002) Automatic integration of non-perceptual action effect features: the case of the associative affective Simon effect. Psychol Res 66:166–173

    Article  Google Scholar 

  • Bonnet M, MacKay WA (1989) Changes in contingent-negative variation and reaction time related to precueing of direction and force of a forearm movement. Brain Behav Evol 33:147–152

    Google Scholar 

  • Bridgeman B, Lewis S, Heit G, Nagle M (1979) Relation between cognitive and motor-oriented systems of visual position perception. J Exp Psychol Hum Percept Perform 5:692–700

    Article  CAS  PubMed  Google Scholar 

  • Bruno N (2001) When does action resist visual illusions? Trends Cogn Sci 5:379–382

    Article  Google Scholar 

  • Bullock D, Grossberg S (1988) Neural dynamics of planned arm movements: emergent invariants and speed-accuracy properties during trajectory formation. Psychol Rev 95:49–90

    Article  Google Scholar 

  • Cohen JD, Dunbar K, McClelland JL (1990) On the control of automatic processes: a parallel distributed processing account of the Stroop effect. Psychol Rev 97:332–361

    Article  CAS  PubMed  Google Scholar 

  • Craft JL, Simon JR (1970) Processing symbolic information from a visual display: interference from an irrelevant directional cue. J Exp Psychol 83:415–420

    CAS  PubMed  Google Scholar 

  • Dassonville P, Lewis SM, Zhu X-H, Ugurbil K, Kim S-G, Ashe J (2001) The effect of stimulus-response compatibility on cortical motor activation. Neuroimage 13:1–14

    Article  Google Scholar 

  • De Jong R (1993) Multiple bottlenecks in overlapping task performance. J Exp Psychol Hum Percept Perform 19:965–980

    Article  PubMed  Google Scholar 

  • Decety J, Grèzes J, Costes N, Perani D, Jeannerod M, Procyk E, Grassi F, Fazio F (1997) Brain activity during observation of actions. Influence of action content and subject’s strategy. Brain 120:1763–1777

    Article  Google Scholar 

  • Di Pellegrino G, Fadiga L, Fogassi V, Gallese V, Rizzolatti G (1992) Understanding motor events: a neurophysiological study. Exp Brain Res 91:176–180

    Google Scholar 

  • Eimer M (1995) Stimulus-response compatibility and automatic response activation: evidence from psychophysiological studies. J Exp Psychol Hum Percept Perform 21:837–854

    Article  CAS  PubMed  Google Scholar 

  • Elsner B, Hommel B (2001) Effect anticipation and action control. J Exp Psychol Hum Percept Perform 27:229–240

    Article  Google Scholar 

  • Elsner B, Hommel B (2004) Contiguity and contingency in the acquisition of action effects. Psychol Res 68:138–154

    Article  Google Scholar 

  • Elsner B, Hommel B, Mentschel C, Drzezga A, Prinz W, Conrad B, Siebner H (2002) Linking actions and their perceivable consequences in the human brain. Neuroimage 17:364–372

    Article  Google Scholar 

  • Eriksen BA, Eriksen CW (1974) Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept Psychophys 16:143–149

    Google Scholar 

  • Fadiga L, Fogassi L, Pavesi G, Rizzolatti G (1995) Motor facilitation during action observation: a magnetic stimulation study. J Neurophysiol 73:2608–2611

    Google Scholar 

  • Franz VH (2001) Action does not resist visual illusions. Trends Cogn Sci 5:457–459

    Article  PubMed  Google Scholar 

  • Gallese V, Fadiga L, Fogassi L, Rizzolatti G (1996) Action recognition in the premotor cortex. Brain 119:593–609

    Google Scholar 

  • Georgopoulos AP (1990) Neurophysiology of reaching. In: Jeannerod M (ed) Attention and performance XIII: motor representation and control. Erlbaum, Hillsdale, pp 227–263

    Google Scholar 

  • Gibson JJ (1979) The ecological approach to visual perception. Houghton Mifflin, Boston

    Google Scholar 

  • Gilbert SJ, Shallice T (2002) Task switching: a PDP model. Cogn Psychol 44:297–337

    Article  Google Scholar 

  • Glover S (2002) Visual illusions affect planning but not control. Trends Cogn Sci 6:288–292

    Article  PubMed  Google Scholar 

  • Glover S (in press) Separate visual representations in the planning and control of action. Behav Brain Sci

  • Glover S, Dixon P (2001) Dynamic illusion effects in a reaching task: evidence for separate visual representations in the planning and control of reaching. J Exp Psychol Hum Percept Perform 27:560–572

    Article  CAS  PubMed  Google Scholar 

  • Glover S, Dixon P (2002) Semantics affect the planning but not control of grasping. Exp Brain Res 146:383–387

    Article  Google Scholar 

  • Goodale MA, Pélisson D, Prablanc C (1986) Large adjustments in visually guided reaching do not depend on vision of the hand or perception of target displacement. Nature 320:748–750

    CAS  PubMed  Google Scholar 

  • Goodale MA, Milner AD, Jakobson LS, Carey DP (1991) A neurological dissociation between perceiving objects and grasping them. Nature 349:154–156

    Article  CAS  PubMed  Google Scholar 

  • Grafton ST, Arbib MA, Fadiga L, Rizzolatti G (1996) Localization of grasp representations in humans by positrone emission tomography 2 observation compared with imagination. Exp Brain Res 112:103–111

    Article  CAS  PubMed  Google Scholar 

  • Greenwald AG (1970) Sensory feedback mechanisms in performance control: with special reference to the ideo-motor mechanism. Psychol Rev 77:73–99

    CAS  PubMed  Google Scholar 

  • Hommel B (1993) Inverting the Simon effect by intention: determinants of direction and extent of effects of irrelevant spatial information. Psychol Res 55:270–279

    Article  Google Scholar 

  • Hommel B (1996) The cognitive representation of action: automatic integration of perceived action effects. Psychol Res 59:176–186

    Article  Google Scholar 

  • Hommel B (1997) Toward an action-concept model of stimulus-response compatibility. In: Hommel B, Prinz W (eds) Theoretical issues in stimulus-response compatibility. North-Holland, Amsterdam, pp 281–320

    Google Scholar 

  • Hommel B (1998a) Event files: evidence for automatic integration of stimulus-response episodes. Visual Cogn 5:183–216

    Google Scholar 

  • Hommel B (1998b) Automatic stimulus-response translation in dual-task performance. J Exp Psychol Hum Percept Perform 24:1368–1384

    Article  Google Scholar 

  • Hommel B (2000) The prepared reflex: automaticity and control in stimulus-response translation. In: Monsell S, Driver J (eds) Control of cognitive processes: attention and performance XVIII. MIT Press, Cambridge, pp 247–273

    Google Scholar 

  • Hommel B (2004) Event files: feature binding in and across perception and action. Trends Cogn Sci 8:494–500

    Article  Google Scholar 

  • Hommel B, Colzato LS (2004) Visual attention and the temporal dynamics of feature integration. Visual Cogn 11:483–521

    Article  Google Scholar 

  • Hommel B, Eglau B (2002) Control of stimulus-response translation in dual-task performance. Psychol Res 66:260–273

    Article  Google Scholar 

  • Hommel B, Müsseler J, Aschersleben G, Prinz W (2001a) The theory of event coding (TEC): a framework for perception and action planning. Behav Brain Sci 24:849–878

    CAS  PubMed  Google Scholar 

  • Hommel B, Müsseler J, Aschersleben G, Prinz W (2001b) Codes and their vicissitudes. Behav Brain 24:910–937

    Google Scholar 

  • Hommel B, Alonso D, Fuentes LJ (2003) Acquisition and generalization of action effects. Visual Cogn 10:965–986

    Article  Google Scholar 

  • Ivry RB, Franz EA, Kingstone A, Johnston JC (1998) The psychological refractory period effect following callosotomy: uncoupling of lateralized response codes. J Exp Psychol Hum Percept Perform 24:463–480

    Google Scholar 

  • Jackson SR (2000) Perception, awareness and action. In: Rossetti Y, Revonsuo A (eds) Interaction between dissociable conscious and nonconscious processes. John Benjamins, Amsterdam, pp 73–98

    Google Scholar 

  • Jackson PL, Decety J (2004) Motor cognition: a new paradigm to study self–other interactions. Curr Opin Neurobiol 14:259–263

    Article  Google Scholar 

  • James W (1890) The principles of psychology. Dover, New York

    Google Scholar 

  • Jeannerod M (1984) The contribution of open-loop and closed-loop control modes in prehension movements. In: Kornblum S, Requin J (eds) Preparatory states and processes. Erlbaum, Hillsdale, pp 323–337

    Google Scholar 

  • Kalaska JF, Hyde ML (1985) Area 4 and area 5: differences between the load direction-dependent discharge variability of cells during active postural fixation. Exp Brain Res 59:197–202

    CAS  PubMed  Google Scholar 

  • Kerzel D, Hommel B, Bekkering H (2001) A Simon effect induced by induced motion: evidence for a direct linkage between cognitive and motor maps. Percept Psychophys 63:862–874

    Google Scholar 

  • Kornblum S, Hasbroucq T, Osman A (1990) Dimensional overlap: cognitive basis for stimulus-response compatibility—a model and taxonomy. Psychol Rev 97:253–270

    Article  CAS  PubMed  Google Scholar 

  • Kunde W (2001) Response-effect compatibility in manual choice reaction tasks. J Exp Psychol Hum Percept Perform 27: 387–394

    Article  Google Scholar 

  • Kutas M, Donchin E (1980) Preparation to respond as manifested by movement-related brain potentials. Brain Res 202:95–115

    Article  Google Scholar 

  • Liu X, Banich MT, Jacobson BL, Tanabe JL (2004) Common and distinct neural substrates of attentional control in an integrated Simon and spatial Stroop task as assessed by event-related fMRI. Neuroimage 22:1097–1106

    Article  Google Scholar 

  • Logan GD (1988) Toward an instance theory of automatization. Psychol Rev 95:492–527

    Article  Google Scholar 

  • Logan GD, Burkell J (1986) Dependence and independence in responding to double stimulation: a comparison of stop, change, and dual-task paradigms. J Exp Psychol Hum Percept Perform 12:549–563

    Article  Google Scholar 

  • Logan GD, Gordon RD (2001) Executive control of visual attention in dual-task situations. Psychol Rev 108:393–434

    Article  Google Scholar 

  • Logan GD, Schulkind MD (2000) Parallel memory retrieval in dual-task situations: I. semantic memory. J Exp Psychol Hum Percept Perform 26:1072–1090

    Article  Google Scholar 

  • Loveless NF (1962) Direction-or-motion stereotypes: a review. Ergonomics 5:357–383

    Google Scholar 

  • Miall RC (2003) Connecting mirror neurons and forward models. Neuroreport 14:2135–2137

    Article  Google Scholar 

  • Milner AD, Goodale MA (1995) The visual brain in action. Oxford University Press, Oxford

    Google Scholar 

  • Monsell S (2003) Task switching. Trends Cogn Sci 7:134–140

    Article  Google Scholar 

  • Pashler H (1994) Dual-task interference in simple tasks: data and theory. Psychology B 116:220–244

    Article  Google Scholar 

  • Perenin MT, Vighetto A (1988) Optic ataxia: a specific disruption in visuomotor mechanisms. I. Different aspects of the deficit in reaching for objects. Brain 111:643–674

    Google Scholar 

  • Prablanc C, Pélisson D (1990) Gaze saccade orienting and hand pointing are locked to their goal by quick internal loops. In: Jeannerod M (ed) Attention and performance XIII. Erlbaum, Hillsdale, pp 653–676

    Google Scholar 

  • Prinz W (1987) Ideo-motor action. In: Heuer H, Sanders AF (eds) Perspectives on perception and action. Erlbaum, Hillsdale, pp 47–76

    Google Scholar 

  • Prinz W (1990) A common coding approach to perception and action. In: Neumann O, Prinz W (eds) Relationships between perception and action. Springer, Berlin Heidelberg New York, pp 167–201

    Google Scholar 

  • Proctor RW, Lu C-H (1999) Processing irrelevant information: practice and transfer effects in choice-reaction tasks. Mem Cogn 27:63–77

    Google Scholar 

  • Proctor RW, Vu K-PL (2002) Mixing location-irrelevant and location-relevant trials: influence of stimulus mode on spatial compatibility effects. Mem Cogn 30:281–293

    Google Scholar 

  • Proctor RW, Vu K-PL, Marble JG (2003) Spatial compatibility effects are eliminated when intermixed location-irrelevant trials produce the same spatial codes. Visual Cogn 10:15–50

    Google Scholar 

  • Riehle A, Requin J (1989) Monkey primary motor and premotor cortex: single-cell activity related to prior information about direction and extent of an intended movement. J Neurophysiol 61:534–549

    Google Scholar 

  • Rizzolatti G, Fogassi L, Gallese V (2001) Neurophysiological mechanisms underlying the understanding and imitation of action. Nat Rev Neurosci 2:661–670

    Article  Google Scholar 

  • Rossetti Y, Pisella L (2002) Several ‘vision for action’ systems: a guide to dissociating and integrating dorsal and ventral functions. In: Prinz W, Hommel B (eds) Common mechanisms in perception and action: attention and performance XIX. Oxford University Press, Oxford, pp 62–119

    Google Scholar 

  • Schmidt RA (1975) A schema theory of discrete motor skill learning. Psychol Rev 82:225–260

    Google Scholar 

  • Schubotz RI, von Cramon DY (2001) Functional organization of the lateral premotor cortex: fMRI reveals different regions activated by anticipation of object properties, location and speed. Cogn Brain Res 11:97–112

    Article  Google Scholar 

  • Schubotz RI, von Cramon DY (2002) Predicting perceptual events activates corresponding motor schemes in lateral premotor cortex: an fMRI study. Neuroimage 15:787–796

    Article  Google Scholar 

  • Schubotz RI, von Cramon DY (2003) Functional–anatomical concepts of human premotor cortex: evidence from fMRI and PET studies. Neuroimage 20:S120-S131

    Article  Google Scholar 

  • Schubotz RI, Friederici AD, von Cramon DY (2000) Time perception and motor timing: a common cortical and subcortical basis revealed by fMRI. Neuroimage 11:1–12

    Article  Google Scholar 

  • Simon JR, Rudell AP (1967) Auditory S-R compatibility: the effect of an irrelevant cue on information processing. J Appl Psychol 51:300–304

    Google Scholar 

  • Stock A, Stock C (2004) A short history of ideo-motor action. Psychol Res 68:176–188

    Article  Google Scholar 

  • Stoet G, Hommel B (1999) Action planning and the temporal binding of response codes. J Exp Psychol Hum Percept Perform 25:1625–1640

    Article  Google Scholar 

  • Stroop JR (1935) Studies of interference in serial verbal reactions. J Exp Psychol 28:643–662

    Google Scholar 

  • Sudevan P, Taylor DA (1987) The cuing and priming of cognitive operations. J Exp Psychol Hum Percept Perform 13:89–103

    Article  Google Scholar 

  • Tagliabue M, Zorzi M, Umiltà C, Bassignani C (2000) The role of LTM links and STM links in the Simon effect. J Exp Psychol Hum Percept Perform 26:648–670

    Article  Google Scholar 

  • Tucker M, Ellis R (1998) On the relations of seen objects and components of potential actions. J Exp Psychol Hum Percept Perform 24:830–846

    Article  Google Scholar 

  • Turvey MT (1977) Preliminaries to a theory of action with reference to vision. In: Shaw R, Bransford J (eds) Perceiving, acting, and knowing: toward an ecological psychology. Erlbaum, Hillsdale, pp 211–265

    Google Scholar 

  • Vidal F, Bonnet M, Macar F (1991) Programming response duration in a precueing reaction time paradigm. J Mot Behav 23:226–234

    Google Scholar 

  • Vu K-PL, Proctor RW, Urcuioli P (2003) Transfer effects of incompatible location-relevant mappings on a subsequent visual or auditory Simon task. Mem Cogn 31:1146–1152

    Google Scholar 

  • Waszak F, Hommel B, Allport A (2003) Task-switching and long-term priming: role of episodic stimulus-task bindings in task-shift costs. Cogn Psychol 46:361–413

    Article  Google Scholar 

  • Watkins KE, Strafella AP, Paus T (2003) Seeing and hearing speech excites the motor system involved in speech production. Neuropsychologia 41:989–994

    Article  Google Scholar 

  • Welford AT (1952) The “psychological refractory period” and the timing of high-speed performance—a review and a theory. Br J Psychol 43:2–19

    Google Scholar 

  • Ziessler M, Nattkemper D (2002) Effect anticipation in action planning. In: Prinz W, Hommel B (eds) Common mechanisms in perception and action: attention and performance XIX. Oxford University Press, Oxford, pp 645–672

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Hommel.

Additional information

Communicated by Irene Ruspantini and Niels Birbaumer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hommel, B. Perception in action: multiple roles of sensory information in action control. Cogn Process 6, 3–14 (2005). https://doi.org/10.1007/s10339-004-0040-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10339-004-0040-0

Keywords

Navigation