Skip to main content
Log in

The role of spatial attention and other processes on the magnitude and time course of cueing effects

  • Review
  • Published:
Cognitive Processing Aims and scope Submit manuscript

Abstract

We are quite often exposed to multiple objects present in the visual scene, thus attentional selection is necessary in order to selectively respond to the relevant information. Objects can be selected on the basis of the location they occupy by orienting attention in space. In this paper, we review the evidence showing that attention can be oriented in space either endogenously, on the basis of central cues, predictive of the relevant location, or exogenously, automatically triggered by the salient properties of visual stimuli (peripheral cues). Several dissociations observed between orienting on the basis of the two types of cues have led to the conclusion that they do not represent just two modes of triggering the orienting of the very same attentional mechanism, but rather they modulate processing differently. We present a theoretical framework according to which endogenous predictive cues facilitate target processing by orienting attention, thus amplifying processing at the attended location. In contrast, apart from attentional orienting, peripherally presented discrepant cues might trigger additional cue-target event-integration and event-segregation processes, which modulate processing in a different way, thus leading to cueing effects that are exclusively triggered by peripheral cues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anllo-Vento L (1995) Shifting attention in visual space. The effects of peripheral cueing on brain cortical potentials. Int J Neurosci 80:353–370

    PubMed  CAS  Google Scholar 

  • Arnott SR, Pratt J, Shore DI, Alain C (2001) Attentional set modulates visual areas: an event-related potential study of attentional capture. Cogn Brain Res 12(3):383–395

    Article  CAS  Google Scholar 

  • Bartolomeo P, Chokron S (2002) Orienting of attention in left unilateral neglect. Neurosci B 26(2):217–234

    Google Scholar 

  • Berger A, Henik A (2000) The endogenous modulation of IOR is nasal-temporal asymmetric. J Cogn Neurosci 12(3):421–428

    Article  PubMed  CAS  Google Scholar 

  • Berlucchi G, Chelazzi L, Tassinari G (2000) Volitional covert orienting to a peripheral cue does not suppress cue-induced inhibition of return. J Cogn Neurosci 12(4):648–663

    Article  PubMed  CAS  Google Scholar 

  • Briand KA (1998) Feature integration and spatial attention: more evidence of a dissociation between endogenous and exogenous orienting. J Exp Psychol Hum Percept Perform 24(4):1243–1256

    Article  Google Scholar 

  • Briand KA, Klein RM (1987) Is Posner’s “beam” the same as Treisman’s “glue”?: on the relation between visual orienting and feature integration theory. J Exp Psychol Hum Percept Perform 13:228–241

    Article  PubMed  CAS  Google Scholar 

  • Carrasco M, Penpeci-Talgar C, Eckstein M (2000) Spatial covert attention increases contrast sensitivity across the CSF: support for signal enhancement. Vision Res 40(10–12):1203–1215

    Article  PubMed  CAS  Google Scholar 

  • Chica AB, Lupiáñez J (2004) Inhibition of return without return of attention. Psicothema 16(2):248–254

    Google Scholar 

  • Ciaramitaro VM, Cameron EL, Glimcher PW (2001) Stimulus probability directs spatial attention: an enhancement of sensitivity in humans and monkeys. Vision Res 41(1)57–75

    Article  PubMed  CAS  Google Scholar 

  • Clark VP, Hillyard SA (1996) Spatial selective attention affects early extrastriate but not striate components of the visual evoked potential. J Cogn Neurosci 8(5)387–402

    Article  Google Scholar 

  • Colby CL, Duhamel JR, Goldberg ME (1996) Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. J Neurophys 76(5):2841–2852

    CAS  Google Scholar 

  • Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3(3):201–215

    PubMed  CAS  Google Scholar 

  • Danziger S, Kingstone A, Ward R (2001) Environmentally defined frames of reference: their time course and sensitivity to spatial cues and attention. J Exp Psychol Hum Percept Perform 27(2):494–503

    Article  PubMed  CAS  Google Scholar 

  • Di Russo F, Martinez A, Hillyard SA (2003) Source analysis of event-related cortical activity during visuo-spatial attention. Cereb Cortex 13:46–499

    Google Scholar 

  • Doallo S, Lorenzo-Lopez L, Vizoso C, Holguin SR, Amenedo E, Bara S, et al. (2004) The time course of the effects of central and peripheral cues on visual processing: an event-related potentials study. Clin Neurophysiol 115(1):199–210

    Article  PubMed  CAS  Google Scholar 

  • Dosher BA, Lu ZL (2000) Noise exclusion in spatial attention. Psychol Sci 11(2):139–146

    Article  PubMed  CAS  Google Scholar 

  • Downing CJ (1988) Expectancy and visual-spatial attention: effects on perceptual quality. J Exp Psychol Hum Percept Perform 14(2):188–202

    Article  PubMed  CAS  Google Scholar 

  • Egly R, Driver J, Rafal RD (1994) Shifting visual attention between objects and locations: evidence from normal and parietal lesion patients. J Exp Psychol Gen 123(2):161–177

    Article  PubMed  CAS  Google Scholar 

  • Eimer M (1993) Spatial cueing, sensory gating and selective response preparation—an ERP study on visuospatial orienting. Electroencephalogr Clin Neurophysiol 88(5):408–420

    Article  PubMed  CAS  Google Scholar 

  • Eimer M (2000) The time course of spatial orienting elicited by central and peripheral cues: evidence from event-related brain potentials. Biol Psychol 53:253–258

    Article  PubMed  CAS  Google Scholar 

  • Folk CL, Remington R (1998) Selectivity in distraction by irrelevant featural singletons: Evidence for two forms of attentional capture. J Exp Psychol Hum Percept Perform 24(3):847–858

    Article  PubMed  CAS  Google Scholar 

  • Folk CL, Remington R (1999) Can new objects override attentional control settings? Percept Psychophys 61(4):727–739

    PubMed  CAS  Google Scholar 

  • Folk CL, Remington RW, Johnston JC (1992) Involuntary covert orienting is contingent on attentional control settings. J Exp Psychol Hum Percept Perform 18(4):1030–1044

    Article  PubMed  CAS  Google Scholar 

  • Folk CL, Remington RW, Wright JH (1994) The structure of attentional control: contingent attentional capture by apparent motion, abrupt onset, and color. J Exp Psychol Hum Percept Perform 20(2):317–329

    Article  PubMed  CAS  Google Scholar 

  • Fu SM, Fan SL, Chen L, Zhuo Y (2001) The attentional effects of peripheral cueing as revealed by two event-related potential studies. Clin Neurophysiol 112(1):172–185

    Article  PubMed  CAS  Google Scholar 

  • Funes MJ (2004) The role of attentional orienting on the spatial processing of visual stimuli. Doctoral Thesis, Universidad de Granada

  • Funes MJ, Lupianez J (2003) Posner’s theory of attention: a task to measure the attentional functions of orienting, alerting and cognitive control and the interactions between them. Psicothema 15(2):260–266

    Google Scholar 

  • Goldsmith M, Yeari M (2003) Modulation of object-based attention by spatial focus under endogenous and exogenous orienting. J Exp Psychol Hum Percept Perform 29(5):897–918

    Article  PubMed  Google Scholar 

  • Goschke T (2003) Voluntary action and cognitive control from a cognitive neuroscience perspective. In: Maasen S, Prinz W, Roth G (eds) Voluntary action. An issue at the interface of nature and culture. Oxford University Press, Oxford, pp 49–85

    Google Scholar 

  • Handy TC, Jha AP, Mangun GR (1999) Promoting novelty in vision: inhibition of return modulates perceptual-level processing. Psychol Sci 10(2):157–161

    Article  Google Scholar 

  • Harter MR, Aine C, Schroeder C (1982) Hemispheric-differences in the neural processing of stimulus location and type—effects of selective attention on visual evoked-potentials. Neuropsychologia 20(4):421–438

    Article  PubMed  CAS  Google Scholar 

  • Hawkins HL, Hillyard SA, Luck SJ, Mouloua M, Downing CJ, Woodward DP (1990) Visual attention modulates signal detectability. J Exp Psychol Hum Percept Perform 16(4):802–811

    Article  PubMed  CAS  Google Scholar 

  • Heinze HJ, Mangun GR, Burchert W, Hinrichs H, Scholz M, Munte TF, et al. (1994) Combined spatial and temporal imaging of brain activity during visual selective attention in humans. Nature 372(6506):543–546

    Article  PubMed  CAS  Google Scholar 

  • Hillyard SA, Mangun GR (1987) Sensory gating as a physiological mechanism for visual selective attention. In: Johnson R, Rohrbaugh JW, Parasuraman R (eds) Current trends in event-related potential research. Elsevier, Amsterdam, pp 61–67

    Google Scholar 

  • Hoffmann J (1993) Vorhersage und Erkenntnis: Die Funktion von Antizipationen in der menschlichen Verhaltenssteuerung und Wahrnehmung. Hogrefe, Göttingen

    Google Scholar 

  • Hommel B (1993a) The relationship between stimulus-processing and response selection in the Simon task—evidence for a temporal overlap. Psychol Res 55(4):280–290

    Article  Google Scholar 

  • Hommel B (1993b) The role of attention for the Simon effect. Psychol Res 55(3):208–222

    Article  PubMed  CAS  Google Scholar 

  • Hommel B (1998) Event files: evidence for automatic integration of stimulus–response episodes. Vis Cogn 5(1–2):183–216

    Google Scholar 

  • Hommel B, Colzato L (2004) Visual attention and the temporal dynamics of feature integration. Vis Cogn 11(4):483–521

    Article  Google Scholar 

  • Hopfinger JB, Jha AP, Hopf JM, Girelli M, Mangun GR (2000) Electrophysiological and neuroimaging studies of voluntary and reflexive attention. In: Driver J, Monsell S (eds) Attention and performance XVIII: the control over cognitive processes. Oxford University Press, Oxford, pp 125–153

    Google Scholar 

  • Hopfinger JB, Mangun GR (1998) Reflexive attention modulates processing of visual stimuli in human extrastriate cortex. Psychol Sci 9(6):441–447

    Article  Google Scholar 

  • Hopfinger JB, Mangun GR (2001) Tracking the influence of reflexive attention on sensory and cognitive processing. Cogn Affect Behav Neurosci 1(1):56–65

    Article  PubMed  CAS  Google Scholar 

  • Hunt AR, Kingstone A (2003) Inhibition of return: dissociating attentional and oculomotor components. J Exp Psychol Hum Percept Perform 29(5):1068–1074

    Article  PubMed  Google Scholar 

  • Ivanoff J, Klein RM, Lupiáñez J (2002) Inhibition of return interacts with the Simon effect: an omnibus analysis and its implications. Percept Psychophys 64(2):318–327

    PubMed  Google Scholar 

  • Jonides J (1976) Voluntary vs reflexive control of minds eyes movement. Bull Psychon Soc 8(4):243–244

    Google Scholar 

  • Jonides J (1981) Voluntary versus automatic control over the mind’s eye’s movement. In: Long J, Baddeley A (eds) Attention and performance XI. Lawrence Erlbaum, Hillsdale, pp 187–283

    Google Scholar 

  • Jonides J, Yantis S (1988) Uniqueness of abrupt visual onset in capturing attention. Percept Psychophys 43(4):346–354

    PubMed  CAS  Google Scholar 

  • Kahneman D, Treisman A, Gibbs BJ (1992) The reviewing of object files: object-specific integration of information. Cog Psychol 24(2):175–219

    Article  CAS  Google Scholar 

  • Kane MJ, May CP, Hasher L, Rahhal T, Stoltzfus ER (1997) Dual mechanisms of negative priming. J Exp Psychol Hum Percept Perform 23(3):632–650

    Article  PubMed  CAS  Google Scholar 

  • Kingstone A, Pratt J (1999) Inhibition of return is composed of attentional and oculomotor processes. Percept Psychophys 61(6):1046–1054

    PubMed  CAS  Google Scholar 

  • Klein RM (1988) Inhibitory tagging system facilitates visual search. Nature 334:430–431

    Article  PubMed  CAS  Google Scholar 

  • Klein RM (1994) Perceptual-motor expectancies interact with covert visual orienting under conditions of endogenous but not exogenous control. Can J Exp Psychol 48(2):167–181

    PubMed  CAS  Google Scholar 

  • Klein RM (2000) Inhibition of return. Trends Cogn Sci 4(4):138–147

    Article  PubMed  Google Scholar 

  • Klein RM (2004) On the control of visual orienting. In: Posner MI (ed) Cognitive neuroscience of attention. Guilford, New York (in press)

  • Klein RM, MacInnes WJ (1999) Inhibition of return is a foraging facilitator in visual search. Psychol Sci 10(4):346–352

    Article  Google Scholar 

  • Klein RM, Shore DI (2000) Relations among modes of visual orienting. In: Monsell S, Driver J (eds) Attention and performance XVIII: control of cognitive processes. MIT, Cambridge, pp 195–208

    Google Scholar 

  • Klein RM, Taylor TL (1994) Categories of cognitive inhibition with reference to attention. In: Dale Dagenbach THC (ed) Inhibitory processes in attention, memory, and language. Academic, San Diego, pp 113–150

    Google Scholar 

  • Kornblum S (1992) Dimensional overlap and dimensional relevance in stimulus–response and stimulus–stimulus compatibility. In: Stelmach G, Requin J (eds) Tutorials in motor behavior II. North-Holland, Amsterdam, pp 743–777

  • Kornblum S, Hasbroucq T, Osman A (1990) Dimensional overlap—cognitive basis for stimulus–response compatibility—a model and taxonomy. Psychol Rev 97(2):253–270

    Article  PubMed  CAS  Google Scholar 

  • Kornblum S, Lee JW (1995) Stimulus–response compatibility with relevant and irrelevant stimulus dimensions that do and do not overlap with the response. J Exp Psychol Hum Percept Perform 21(4):855–875

    Article  PubMed  CAS  Google Scholar 

  • Làdavas E, Carletti M, Gori G (1994) Automatic and voluntary orienting of attention in patients with visual neglect: horizontal and vertical dimensions. Neuropsychologia 32:1195–1208

    Article  PubMed  Google Scholar 

  • Losier BJ, Klein RM (2001) A review of the evidence for a disengage deficit following parietal lobe damage. Neuroscience B 25(1):1–13

    CAS  Google Scholar 

  • Lowe DG (1985) Further investigations of inhibitory mechanisms in attention. Mem Cogn 13(1):74–80

    CAS  Google Scholar 

  • Lu ZL, Dosher BA (1998) External noise distinguishes attention mechanisms. Vision Res 38(9):1183–1198

    Article  PubMed  CAS  Google Scholar 

  • Lu ZL, Dosher BA (2000) Spatial attention: different mechanisms for central and peripheral temporal precues? J Exp Psychol Hum Percept Perform 26(5):1534–1548

    Article  PubMed  CAS  Google Scholar 

  • Lupiáñez J, Decaix C, Sieroff E, Chokron S, Milliken B, Bartolomeo P (2004) Independent effects of endogenous and exogenous spatial cueing: inhibition of return at endogenously attended target locations. Exp Brain Res 159(4):447–457

    Article  PubMed  Google Scholar 

  • Lupiáñez J, Funes MJ (2004) Peripheral spatial cues modulate spatial congruency effects: analyzing the “locus” of the cueing modulation. Eur J Cogn P (in press)

    Google Scholar 

  • Lupiáñez J, Milan EG, Tornay FJ, Madrid E, Tudela P (1997) Does IOR occur in discrimination tasks? Yes, it does, but later. Percept Psychophys 59(8):1241–1254

    PubMed  Google Scholar 

  • Lupiáñez J, Milliken B (1999) Inhibition of return and the attentional set for integrating versus differentiating information. J Gen Psychol 126(4):392–418

    Article  PubMed  Google Scholar 

  • Lupiáñez J, Milliken B, Solano C, Weaver B, Tipper SP (2001) On the strategic modulation of the time course of facilitation and inhibition of return. Q J Exp Psychol A 54(3):753–773

    Article  PubMed  Google Scholar 

  • Lupiáñez J, Ruz H, Funes MJ, Hilliken B (2004) Psychological Research (submitted)

  • Lupiáñez J, Tudela P, Rueda MR (1999) Control inhibitorio en la orientacion atencional: una revision sobre la inhibicion de retorno./Inhibitory control in attentional orientation: a review about the inhibition of return. Cognitiva 11(1):23–44

    Article  Google Scholar 

  • Macquistan AD (1997) Object-based allocation of visual attention in response to exogenous, but not endogenous, spatial precues. Psychon Bull Rev 4(4):512–515

    Google Scholar 

  • Mangun GR (1995) Neural mechanisms of visual selective attention in humans. Psychophysiology 32(1):4–18

    PubMed  CAS  Google Scholar 

  • Mangun GR, Hillyard SA (1987) The spatial allocation of visual-attention as indexed by event-related brain potentials. Hum Factors 29(2):195–211

    PubMed  CAS  Google Scholar 

  • Mangun GR, Hillyard SA (1991) Modulations of sensory-evoked brain potentials indicate changes in perceptual processing during visual spatial priming. J Exp Psychol Hum Percept Perform 17(4):1057–1074

    Article  PubMed  CAS  Google Scholar 

  • Mangun GR, Hillyard SA, Luck SJ (1993) Electrocortical substrates of visual selective attention. Atten Perform 14:219–243

    Google Scholar 

  • Mangun GR, Hinrichs H, Scholz M, Mueller-Gaertner HW, Herzog H, Krause BJ et al. (2001) Integrating electrophysiology and neuroimaging of spatial selective attention to simple isolated visual stimuli. Vision Res 41(10–11):1423–1435

    Article  PubMed  CAS  Google Scholar 

  • Mangun GR, Hopfinger JB, Kussmaul CL, Fletcher EM, Heinze HJ (1997) Covariations in ERP and PET measures of spatial selective attention in human extrastriate visual cortex. Hum Brain Mapp 5(4):273–279

    Article  Google Scholar 

  • Marczinski CA, Milliken B, Nelson S (2003) Aging and repetition effects: separate specific and nonspecific influences. Psychol Aging 18(4):780–790

    Article  PubMed  Google Scholar 

  • Martinez A, Anllo-Vento L, Sereno MI, Frank LR, Buxton RB, Dubowitz DJ, et al. (1999) Involvement of striate and extrastriate visual cortical areas in spatial attention. Nat Neurosci 2(4):364–369

    Article  PubMed  CAS  Google Scholar 

  • Maruff P, Yucel M, Danckert J, Stuart G, Currie J (1999) Facilitation and inhibition arising from the exogenous orienting of covert attention depends on the temporal properties of spatial cues and targets. Neuropsychologia 37(6):731–744

    PubMed  CAS  Google Scholar 

  • Maunsell JHR, McAdams CJ (2000) Effects of attention on neuronal response properties in visual cerebral cortex. In: Gazzaniga MS (ed) The new cognitive neurosciences. MIT, Cambridge, pp 290–305

    Google Scholar 

  • Milliken B (2002) Commentary on Ruz and Lupiáñez’s “a review of attention capture: on its automaticity and sensitivity to endogenous control”. Psicológica 23:355–356

    Google Scholar 

  • Milliken B, Joordens S, Merikle PM, Seiffert AE (1998) Selective attention: a reevaluation of the implications of negative priming. Psychol Rev 105(2):203–229

    Article  PubMed  CAS  Google Scholar 

  • Milliken B, Tipper SP, Houghton G, Lupiáñez J (2000) Attending, ignoring, and repetition: on the relation between negative priming and inhibition of return. Percept Psychophys 62(6):1280–1296

    PubMed  CAS  Google Scholar 

  • Mort DJ, Perry RJ, Mannan SK, Hodgson TL, Anderson E, Quest R, et al. (2003) Differential cortical activation during voluntary and reflexive saccades in man. Neuroimage 18(2):231–246

    Article  PubMed  Google Scholar 

  • Müller HJ, Rabbitt PM (1989) Reflexive and voluntary orienting of visual attention: time course of activation and resistance to interruption. J Exp Psychol Hum Percept Perform 15(2):315–330

    Article  PubMed  Google Scholar 

  • Muller HJ, von Muhlenen A (2000) Probing distracter inhibition in visual search: inhibition of return. J Exp Psychol Hum Percept Perform 26(5):1591–1605

    Article  PubMed  CAS  Google Scholar 

  • Oonk HM, Abrams RA (1998) New perceptual objects that capture attention produce inhibition of return. Psychon Bull Rev 5(3):510–515

    Google Scholar 

  • Peelen MV, Heslenfeld DJ, Theeuwes J (2004) Endogenous and exogenous attention shifts are mediated by the same large-scale neural network. Neuroimage 22(2):822–830

    Article  PubMed  Google Scholar 

  • Pollmann S, Weidner R, Humphreys GW, Olivers CNL, Muller K, Lohmann G, et al. (2003) Separating distractor rejection and target detection in posterior parietal cortex—an event-related fMRI study of visual marking. Neuroimage 18(2):310–323

    Article  PubMed  CAS  Google Scholar 

  • Posner MI (1980) Orienting of attention. Q J Exp Psychol 32:3–25

    PubMed  CAS  Google Scholar 

  • Posner MI, Cohen Y (1984) Components of visual orienting. In: Bouma H, Bouwhuis D (eds) Attention and performance X. Lawrence Erlbaum, London, pp 531–556

    Google Scholar 

  • Posner MI, Nissen M, Odgen W (1978) Attended and unattended processing modes: the role of set for spatial location. In: Pick HL, Saltzman E (eds) Modes of perceiving and processing information. Lawrence Erlbaum, Hillsdale, pp 128–181

    Google Scholar 

  • Posner MI, Rafal RD, Choate LS, Vaughan J (1985) Inhibition of return: neural basis and function. Cogn Neuropsychol 2:211–228

    Google Scholar 

  • Posner MI, Snyder CRR, Davidson BJ (1980) Attention and the detection of signals. J Exp Psychol Gen 109:160–174

    Article  CAS  Google Scholar 

  • Posner MI, Walker JA, Friedrich FJ, Rafal RD (1984) Effects of parietal injury on covert orienting of attention. J Neurosci 4:1863–1874

    PubMed  CAS  Google Scholar 

  • Prime DJ, Ward LM (2004) Inhibition of return from stimulus to response. Psychol Sci 15(4):272–276

    Article  PubMed  Google Scholar 

  • Proctor RW, Lu CH, Vanzandt T (1992) Enhancement of the Simon effect by response precuing. Acta Psychol 81(1):53–74

    Article  CAS  Google Scholar 

  • Rafal R (1998) Neglect. In: Parasuraman R (ed) The attentive brain. MIT, Cambridge, pp 489–525

    Google Scholar 

  • Rafal R, Henik A (1994) The neurology of inhibition: integrating controlled and automatic processes. In: Dagenbach D, Carr TH (eds) Inhibitory processes in attention, memory and language. Academic, San Diego, pp 1–51

    Google Scholar 

  • Reynolds JH, Desimone R (2001) Neural mechanisms of attentional selection. In: Braun J, Koch C, Davis JL (eds) Visual attention and cortical circuits. MIT, Cambridge, pp 121–135

  • Rosen AC, Rao SM, Caffarra P, Scaglioni A, Bobholz JA, Woodley SJ et al (1999) Neural basis of endogenous and exogenous spatial orienting. A functional MRI study. J Cogn Neurosci 11(2):135–152

    Article  PubMed  CAS  Google Scholar 

  • Rubichi S, Nicoletti R, Iani C, Umilta C (1997) The Simon effect occurs relative to the direction of an attention shift. J Exp Psychol Hum Percept Perform 23(5):1353–1364

    Article  PubMed  CAS  Google Scholar 

  • Ruz M, Lupiáñez J (2002) A review of attentional capture: on its automaticity and sensitivity to endogenous control. Psicológica 23:283–309

    Google Scholar 

  • Shalev L, Algom D (2000) Stroop and Garner effects in and out of Posner’s beam: reconciling two conceptions of selective attention [in process citation]. J Exp Psychol Hum Percept Perform 26(3):997–1017

    Article  PubMed  CAS  Google Scholar 

  • Stoffer TH (1991) Attentional focusing and spatial stimulus–response compatibility. Psychol Res 53(2):127–135

    Article  PubMed  CAS  Google Scholar 

  • Stoffer TH, Umilta C (1997) Spatial stimulus coding and the focus of attention in S–R compatibility and the Simon effect. In: Hommel B, Prinz W (eds) Theoretical issues in S–R compatibility. Amsterdam, North-Holland, pp 181–128

  • Stoffer TH, Yakin AR (1994) The functional-role of attention for spatial coding in the Simon effect. Psychol Res 56(3):151–162

    Article  PubMed  CAS  Google Scholar 

  • Takeda Y, Yagi A (2000) Inhibitory tagging in visual search can be found if search stimuli remain visible. Percept Psychophys 62(5):927–934

    PubMed  CAS  Google Scholar 

  • Taylor TL, Donnelly MP (2002) Inhibition of return for target discriminations: the effect of repeating discriminated and irrelevant stimulus dimensions. Percept Psychophys 64(2):447–457

    Google Scholar 

  • Theeuwes J (1991) Exogenous and endogenous control of attention—the effect of visual onsets and offsets. Percept Psychophys 49(1):83–90

    PubMed  CAS  Google Scholar 

  • Theeuwes J (1992) Perceptual selectivity for color and form. Percept Psychophys 51(6):599–606

    PubMed  CAS  Google Scholar 

  • Theeuwes J (1994) Endogenous and exogenous control of visual selection. Perception 23(4):429–440

    PubMed  CAS  Google Scholar 

  • Thompson KG, Bichot NP, Schall JD (1997) Dissociation of visual discrimination from saccade programming in macaque frontal eye field. J Neurophys 77(2):1046–1050

    CAS  Google Scholar 

  • Tipper SP, Driver J, Weaver B (1991) Object-centred inhibition of return of visual attention. Q J Exp Psychol A 43A:289–298

    PubMed  CAS  Google Scholar 

  • Tipper SP, Weaver B, Watson FL (1996) Inhibition of return to successively cued spatial locations: commentary on Pratt and Abrams (1995) J Exp Psychol Hum Percept Perform 22(5):1289–1293

    Article  PubMed  CAS  Google Scholar 

  • Treisman A, Gelade G (1980) A feature-integration theory of attention. Cogn Psychol 12(1):97–136

    Article  CAS  PubMed  Google Scholar 

  • Verfaellie M, Bowers D, Heilman KM (1988) Attentional factors in the occurrence of stimulus–response compatibility effects. Neuropsychologia 26(3):435–444

    Article  PubMed  CAS  Google Scholar 

  • Vivas AB, Fuentes LJ (2001) Stroop interference is affected in inhibition of return. Psychon Bull Rev 8(2):315–323

    PubMed  CAS  Google Scholar 

  • Yamaguchi S, Tsuchiya H, Kobayashi S (1994) Electroencephalographic activity associated with shifts of visuospatial attention. Brain 117:553–562

    PubMed  Google Scholar 

  • Yantis S (1998) Control of visual attention. In: Pashler H (ed) Attention. Psychology, London, pp 223–256

    Google Scholar 

  • Yantis S (2000) Goal directed and stimulus driven determinants of attentional control. In: Monsell S, Driver J (eds) Control of cognitive processes: attention and performance XVIII. MIT, Cambridge, pp 73–103

    Google Scholar 

  • Yantis S, Egeth HE (1999) On the distinction between visual salience and stimulus-driven attentional capture. J Exp Psychol Hum Percept Perform 25(3):661–676

    Article  PubMed  CAS  Google Scholar 

  • Yantis S, Hillstrom AP (1994) Stimulus-driven attentional capture—evidence from equiluminant visual objects. J Exp Psychol Hum Percept Perform 20(1):95–107

    Article  PubMed  CAS  Google Scholar 

  • Yantis S, Jonides J (1984) Abrupt visual onsets and selective attention—evidence from visual-search. J Exp Psychol Hum Percept Perform 10(5):601–621

    Article  PubMed  CAS  Google Scholar 

  • Yantis S, Jonides J (1996) Attentional capture by abrupt onsets: new perceptual objects or visual masking? J Exp Psychol Hum Percept Perform 22(6):1505–1513

    Article  PubMed  CAS  Google Scholar 

  • Zimba LD, Brito CF (1995) Attention precuing and Simon effects—a test of the attention coding account of the Simon effect. Psychol Res 58(2):102–118

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Spanish Ministerio de Ciencia y Tecnología with a research project grant (BSO2002-04308-C02-02) to the second author. We would like to thank the two anonymous reviewers for helpful comments on a previous version of the manuscript. Please direct correspondence to María Jesús Funes (e-mail: mjfunes@ugr.es) or to Juan Lupiáñez (e-mail: jlupiane@ugr.es), both at the Departamento de Psicología Experimental y Fisiología del Comportamiento, Facultad de Psicología, Universidad de Granada, Campus Universitario de Cartuja s/n, 18071-Granada, Spain. http://www.ugr.es/neurocog/

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to María Jesús Funes or Juan Lupiáñez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Funes, M.J., Lupiáñez, J. & Milliken, B. The role of spatial attention and other processes on the magnitude and time course of cueing effects. Cogn Process 6, 98–116 (2005). https://doi.org/10.1007/s10339-004-0038-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10339-004-0038-7

Keywords

Navigation