Skip to main content

Advertisement

Log in

The multisample Cucconi test

  • Published:
Statistical Methods & Applications Aims and scope Submit manuscript

Abstract

The multisample version of the Cucconi rank test for the two-sample location-scale problem is proposed. Even though little known, the Cucconi test is of interest for several reasons. The test is compared with some Lepage-type tests. It is shown that the multisample Cucconi test is slightly more powerful than the multisample Lepage test. Moreover, its test statistic can be computed analytically whereas several others cannot. A practical application example in experimental nutrition is presented. An R function to perform the multisample Cucconi test is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adamson GCD, Nash DJ (2013) Long-term variability in the date of monsoon onset over western India. Clim Dyn 40:2589–2603

    Google Scholar 

  • Akkouchi M (2005) On the convolution of gamma distributions. Soochow J Math 31:205–211

    MATH  MathSciNet  Google Scholar 

  • Baumgartner W, Weiss P, Schindler H (1998) A nonparametric test for the general two-sample problem. Biometrics 54:1129–1135

    Article  MATH  Google Scholar 

  • Bausch J (2012) On the efficient calculation of a linear combination of chi-square random variables with an application in counting string vacua, arXiv:1208.2691v2

  • Boos DD, Zhang J (2000) Monte Carlo evaluation of resampling-based hypothesis tests. J Am Stat Assoc 95:486–492

    Article  Google Scholar 

  • Buning H, Thadewald T (2000) An adaptive two-sample location-scale test of Lepage-type for symmetric distributions. J Stat Comput Simul 65:287–310

    Article  MathSciNet  Google Scholar 

  • Castano-Martinez A, Lopez-Blazquez F (2005) Distribution of a sum of weighted noncentral chi-square variables. Test 14:397–415

    Article  MATH  MathSciNet  Google Scholar 

  • Cucconi O (1968) Un nuovo test non parametrico per il confronto tra due gruppi campionari. Giornale degli Economisti 27:225–248

    Google Scholar 

  • Gerhard D, Hothorn LA (2010) Rank transformation in haseman-elston regression using scores for location-scale alternatives. Hum Hered 69:143–151

    Article  Google Scholar 

  • Hajek J, Sidak Z, Sen PK (1998) Theory of rank tests, 2nd edn. Academic Press, New York

  • Kruskal WH, Wallis WA (1952) Use of ranks in one criterion variance analysis. J Am Stat Assoc 47:583–621

    Article  MATH  Google Scholar 

  • Lepage Y (1971) A combination of Wilcoxon’s and Ansari-Bradley’s statistics. Biometrika 58:213–217

    Article  MATH  MathSciNet  Google Scholar 

  • Lindsay BG, Pilla RS, Basak P (2000) Moment-based approximations of distributions using mixtures: theory and applications. Ann Inst Math Stat 52:215–230

    Article  MATH  MathSciNet  Google Scholar 

  • Lunde A, Timmermann A (2004) Duration dependence in stock prices: an analysis of bull and bear markets. J Bus Econ Stat 22:253–273

    Article  MathSciNet  Google Scholar 

  • Marozzi M (2007) Multivariate tri-aspect non-parametric testing. J Nonparametr Stat 19:269–282

    Article  MATH  MathSciNet  Google Scholar 

  • Marozzi M (2009) Some notes on the location-scale Cucconi test. J Nonparametr Stat 21:629–647

    Article  MATH  MathSciNet  Google Scholar 

  • Marozzi M (2012a) A combined test for differences in scale based on the interquantile range. Stat Pap 53:61–72

    Article  MATH  MathSciNet  Google Scholar 

  • Marozzi M (2012b) A modified Hall–Padmanabhan test for the homogeneity of scales. Commun Stat – Theory Methods 41(16–17):3068–3078

    Article  MATH  MathSciNet  Google Scholar 

  • Marozzi M (2012c) A modified Cucconi test for location and scale change alternatives. Colomb J Stat 35:369–382

    MathSciNet  Google Scholar 

  • Marozzi M (2013) Nonparametric simultaneous tests for location and scale testing: a comparison of several methods. Commun Stat–Simul Comput 42(6):1298–1317

    Article  MATH  MathSciNet  Google Scholar 

  • Manly BFJ, Francis RICC (2002) Testing for mean and variance differences with samples from distributions that may be non-normal with unequal variances. J Stat Comput Simul 72(8):633–646

    Article  MATH  MathSciNet  Google Scholar 

  • Moore DS, McCabe GP (2009) Introduction to the practice statstics, 6th edn. Freeman, New York

    Google Scholar 

  • Muccioli C, Belford R, Podgor M, Sampaio P, de Smet M, Nussenblatt R (1993) The diagnosis of intraocular inflammation and cytomegalovirus retinitis in HIV-infected patients by laser flare photometry. Ocul Immunol Inflamm 4(2):75–81

    Article  Google Scholar 

  • Murakami H (2007) Lepage-type statistic based on the modified Baumgartner statistic. Comput Stat Data Anal 51:5061–5067

    Article  MATH  Google Scholar 

  • Murakami H (2008) A multisample rank test for location-scale parameters. Commun Stat–Simul Comput 37:1347–1355

    Article  MATH  Google Scholar 

  • Neuhauser M (2000) An exact two-sample test based on the Baumgartner–Weiss–Schindler statistic and a modification of Lepage’s test. Commun Stat–Theory and Methods 29:67–78

    Article  MathSciNet  Google Scholar 

  • Neuhauser M (2001) An adaptive location-scale test. Biom J 43:809–819

    Article  MathSciNet  Google Scholar 

  • Neuhauser M, Kotzmann J, Walier M, Poulin R (2010) The comparison of mean crowding between two groups. J Parasitol 96:477–481

    Article  Google Scholar 

  • Oden NL (1991) Allocation of effort in Monte Carlo simulation for power of permutation tests. J Am Stat Assoc 86:1074–1076

    Article  Google Scholar 

  • Pesarin F, Salmaso L (2010) Permutation tests for complex data. Wiley, Chichester

    Book  Google Scholar 

  • Podgor MJ, Gastwirth JL (1994) On non-parametric and generalized tests for the two-sample problem with location and scale change alternatives. Stat Med 13:747–758

    Article  Google Scholar 

  • Palar K, Sturm R (2009) Potential societal savings from reduced sodium consumption in the U.S. adult population. Am J Health Promot 24:49–57

    Article  Google Scholar 

  • Puri ML (1965) On some tests of homogeneity of variances. Ann Inst Stat Math 17:323–330

    Article  MATH  Google Scholar 

  • Rublik F (2005) The multisample version of the Lepage test. Kybernetika 41:713–733

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Marozzi.

Appendices

Appendix 1

Cucconi (1968) does not organize the formal results on \(\sum _{i=1}^{n_{k}}R_{ki}^{2}\) and \(\sum _{i=1}^{n_{k}}( n+1-R_{ki})^{2}\) in lemmas and theorems but gives an outline of some derivations. Here we reorganize the results on the sums of squared ranks and squared antiranks in a clearer manner by reporting the whole proof of all results. Well known results about sum of powers of the first \(n\) natural numbers will be used in this section.

Theorem 1

Under the null hypothesis

$$\begin{aligned} E\left( \,\sum _{i=1}^{n_{k}}R_{ki}^{2}\right) =n_{k}\left( n+1\right) \left( 2n+1\right) /6 \ \forall k. \end{aligned}$$

Proof

Consider the population of the first \(n\) squared natural numbers \( 1,2^{2},...,n^{2}\). \(\frac{1}{n_k} \sum _{i=1}^{n_{k}}R_{ki}^{2}\) may be seen as the random variable defined by the mean of a random sample of \(n_{k}\) values drawn without replacement from this population. Since the mean of the sample means is equal to the population mean it follows that

$$\begin{aligned} E\left( \frac{1}{n_{k}} \sum _{i=1}^{n_{k}}R_{ki}^{2}\right) =\frac{1}{n}\sum _{i=1}^{n}i^{2}=\left( n+1\right) \left( 2n+1\right) /6 \end{aligned}$$

\(\forall k\), and the thesis follows immediately. \(\square \)

Theorem 2

Under the null hypothesis

$$\begin{aligned} Var\left( \,\sum _{i=1}^{n_{k}}R_{ki}^{2}\right) =n_{k}\left( n-n_{k}\right) \left( n+1\right) \left( 2n+1\right) \left( 8n+11\right) /180 \forall k. \end{aligned}$$

Proof

With simple algebra we first compute the variance \(\tau ^2\) of the population of the first \(n\) squared natural numbers

$$\begin{aligned} \tau ^{2}&= \frac{1}{n}\sum _{i=1}^{n}\left[ i^{2}-\left( 2n+1\right) \left( n+1\right) /6\right] ^{2}\\&= \left( n^{2}-1\right) \left( 2n+1\right) \left( 8n+11\right) /180. \end{aligned}$$

Now, since the sampling is without replacement

$$\begin{aligned} Var\left( \frac{1}{n_{k}}\sum _{i=1}^{n_{k}}R_{ki}^{2}\right) = \frac{n-n_{k}}{n-1}\frac{\tau ^{2}}{n_{k}} \end{aligned}$$
(8)

\(\forall k\), and the thesis follows immediately. \(\square \)

The following lemmas will be used for proving Theorem 3.

Lemma 1

Under the null hypothesis

$$\begin{aligned} E\left[ \left( \,\sum _{i=1}^{n_{k}}R_{ki}^{2}\right) ^{2}\right]&= n_{k}\left( n-n_{k}\right) \left( n+1\right) \left( 2n+1\right) \left( 8n+11\right) /180\\&\quad +\,n_{k}^{2}\left( n+1\right) ^{2}\left( 2n+1\right) ^{2}/36 \ \forall k. \end{aligned}$$

Proof

Straightforward (we deliberately not factor the result). \(\square \)

Lemma 2

Under the null hypothesis

$$\begin{aligned} E\left( \,\sum _{i=1}^{n_{k}}R_{ki}^{2}\sum _{i=1}^{n_{k}}R_{ki}\right) =n_{k}n\left( n+1\right) ^{2}\left( 2n_{k}+1\right) /12 \forall k. \end{aligned}$$

Proof

$$\begin{aligned} E\left( \, \sum _{i=1}^{n_{k}}R_{ki}^{2}\sum _{i=1}^{n_{k}}R_{ki}\right) =E\left( \,\sum _{i=1}^{n_{k}} R_{ki}^{3}\right) +E\left( \,\sum _{i=1}^{n_{k}}\sum _{j\ne 1}^{n_{k}}R_{ki}^{2}R_{kj}\right) . \end{aligned}$$

It is \(E\left( \,\sum _{i=1}^{n_{k}}R_{ki}^{3}\right) =\frac{n_k}{n}\sum _{j=1}^{n}j^{3}=n_kn\left( n+1\right) ^{2}/4\) and it is

$$\begin{aligned} E\left( \sum _{i=1}^{n_{k}}\sum _{j\ne 1}^{n_{k}}R_{ki}^{2}R_{kj}\right)&= \frac{n_k(n_k-1)}{n\left( n-1\right) }\sum _{j=1}^{n}j^{2}\sum _{l\ne j}^{n}l\\&= \frac{n_k(n_k-1)}{n\left( n-1\right) }\left( \,\sum _{j=1}^{n}j^{2}\sum _{l=1}^{n}l-\sum _{j=1}^{n}j^{3}\right) \\&= n_k(n_k-1)n\left( n+1\right) ^{2}/6. \end{aligned}$$

Finally it follows with simple algebra that

$$\begin{aligned} E\left( \sum _{i=1}^{n_{k}}R_{ki}^{2}\sum _{i=1}^{n_{k}}R_{ki}\right) =n_{k}n\left( n+1\right) ^{2}\left( 2n_{k}+1\right) /12 \end{aligned}$$

\(\forall k\). \(\square \)

Theorem 3

Under the null hypothesis

$$\begin{aligned} Cor\left( \,\sum _{i=1}^{n_{k}}R_{ki}^{2},\sum _{i=1}^{n_{k}}\left( n+1-R_{ki}\right) ^{2}\right) =-\frac{30n+14n^{2}+19}{\left( 8n+11\right) \left( 2n+1\right) } \ \forall k. \end{aligned}$$

Proof

It is

$$\begin{aligned}&Cor\left( \,\sum _{i=1}^{n_{k}}R_{ki}^{2},\sum _{i=1}^{n_{k}}\left( n+1-R_{ki}\right) ^{2}\right) \nonumber \\&\quad =\frac{E\left[ \left( \sum _{i=1}^{n_{k}}R_{ki}^{2}\right) \left( \, \sum _{i=1}^{n_{k}}\left( n+1-R_{ki}\right) ^{2}\right) \right] -n_{k}^{2}\left( 2n+1\right) ^{2}\left( n+1\right) ^{2}/36}{n_{k}\left( n-n_{k}\right) \left( n+1\right) \left( 2n+1\right) \left( 8n+11\right) /180}. \end{aligned}$$

It remains to compute

$$\begin{aligned}&E\left[ \left( \,\sum _{i=1}^{n_{k}}R_{ki}^{2}\right) \left( \, \sum _{i=1}^{n_{k}}\left( n+1-R_{ki}\right) ^{2}\right) \right] \nonumber \\&\quad \quad =n_{k}\left( n+1\right) ^{2}E\left( \,\sum _{i=1}^{n_{k}}R_{ki}^{2}\right) +E \left[ \!\left( \,\sum _{i=1}^{n_{k}}R_{ki}^{2}\right) ^{2}\right] -2\left( n+1\right) E\!\left( \, \sum _{i=1}^{n_{k}}R_{ki}^{2}\sum _{i=1}^{n_{k}}R_{ki}\right) \!. \end{aligned}$$

Using Lemma 1 it follows that

$$\begin{aligned}&Cov\left( \,\sum _{i=1}^{n_{k}}R_{ki}^{2},\sum _{i=1}^{n_{k}}\left( n+1-R_{ki}\right) ^{2}\right) \nonumber \\&\quad \quad =n_{k}\left( n+1\right) ^{2}E\left( \, \sum _{i=1}^{n_{k}}R_{ki}^{2}\right) +Var\left( \, \sum _{i=1}^{n_{k}}R_{ki}^{2}\right) -2\left( n+1\right) E\left( \, \sum _{i=1}^{n_{k}}R_{ki}^{2}\sum _{i=1}^{n_{k}}R_{ki}\right) . \end{aligned}$$

Using Theorem 1, Theorem 2 and Lemma 2 it follows with simple algebra that

$$\begin{aligned}&Cov\left( \,\sum _{i=1}^{n_{k}}R_{ki}^{2},\sum _{i=1}^{n_{k}}\left( n+1-R_{ki}\right) ^{2}\right) \nonumber \\&\quad =-n_{k}\left( n+1\right) \left( 30n+14n^{2}+19\right) \left( n-n_{k}\right) /180 \end{aligned}$$

and finally that

$$\begin{aligned} Cor\left( \,\sum _{i=1}^{n_{k}}R_{ki}^{2},\sum _{i=1}^{n_{k}}\left( n+1-R_{ki}\right) ^{2}\right) =-\frac{30n+14n^{2}+19}{\left( 8n+11\right) \left( 2n+1\right) } \end{aligned}$$

\(\forall k\).\(\square \)

Appendix 2

An R function for performing the multisample Cucconi test follows.

figure a

To analyze the data considered in Sect. 6 run the following code.

figure b

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marozzi, M. The multisample Cucconi test. Stat Methods Appl 23, 209–227 (2014). https://doi.org/10.1007/s10260-014-0255-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10260-014-0255-x

Keywords

Navigation