Skip to main content
Log in

Left gaze bias in humans, rhesus monkeys and domestic dogs

  • Original Paper
  • Published:
Animal Cognition Aims and scope Submit manuscript

Abstract

While viewing faces, human adults often demonstrate a natural gaze bias towards the left visual field, that is, the right side of the viewee’s face is often inspected first and for longer periods. Using a preferential looking paradigm, we demonstrate that this bias is neither uniquely human nor limited to primates, and provide evidence to help elucidate its biological function within a broader social cognitive framework. We observed that 6-month-old infants showed a wider tendency for left gaze preference towards objects and faces of different species and orientation, while in adults the bias appears only towards upright human faces. Rhesus monkeys showed a left gaze bias towards upright human and monkey faces, but not towards inverted faces. Domestic dogs, however, only demonstrated a left gaze bias towards human faces, but not towards monkey or dog faces, nor to inanimate object images. Our findings suggest that face- and species-sensitive gaze asymmetry is more widespread in the animal kingdom than previously recognised, is not constrained by attentional or scanning bias, and could be shaped by experience to develop adaptive behavioural significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Asthana HS, Mandal MK (2001) Visual field bias in the judgment of facial expression of emotion. J Gen Psychol 128:21–29

    Article  PubMed  CAS  Google Scholar 

  • Branson NJ, Rogers LJ (2006) Relationship between paw preference strength and noise phobia in Canis familiaris. J Comp Psychol 120:176–183

    Article  PubMed  CAS  Google Scholar 

  • Bukach CM, Gauthier I, Tarr M (2006) Beyond faces and modularity: the power of an expertise framework. Trends Cogn Sci 10:159–166

    Article  PubMed  Google Scholar 

  • Burt DM, Perrett DI (1997) Perceptual asymmetries in judgements of facial attractiveness, age, gender, speech and expression. Neuropsychologia 35:685–693

    Article  PubMed  CAS  Google Scholar 

  • Butler S, Gilchrist ID, Burt DM, Perrett DI, Jones E, Harvey M (2005) Are the perceptual biases found in chimeric face processing reflected in eye-movement patterns? Neuropsychologia 43:52–59

    Article  PubMed  CAS  Google Scholar 

  • Bulter SH, Harvey M (2006) Perceptual biases in chimeric face processing: eye-movement patterns cannot explain it all. Brain Res 1124:96–99

    Article  CAS  Google Scholar 

  • Chiang CH, Ballantyne AO, Trauner DA (2000) Development of perceptual asymmetry for free viewing of chimeric stimuli. Brain Cognit 44:415–425

    Article  CAS  Google Scholar 

  • de Haan M, Pascalis O, Johnson MH (2002) Specialization of neural mechanisms underlying face recognition in human infants. J Cognit Neurosci 14:199–209

    Article  Google Scholar 

  • Diamond R, Carey S (1986) Why faces are and are not special: an effect of expertise. J Exp Psychol Gen 115:107–117

    Article  PubMed  CAS  Google Scholar 

  • Emery NJ (2000) The eyes have it: the neuroethology, function and evolution of social gaze. Neurosci Biobehav Rev 24:581–604

    Article  PubMed  CAS  Google Scholar 

  • Failla CV, Sheppard DM, Bradshaw JL (2003) Age and responding-hand related changes in performance of neurologically normal subjects on the line-bisection and chimeric-faces tasks. Brain Cognit 52:353–363

    Article  Google Scholar 

  • Farah MJ, Aguirre GK (1999) Imaging visual recognition: PET and fMRI studies of the functional anatomy of human visual recognition. Trends Cogn Sci 3:179–186

    Article  PubMed  Google Scholar 

  • Ferrari PF, Gallese V, Rizzolatti G, Fogassi L (2003) Mirror neurons responding to the observation of ingestive and communicative mouth actions in the monkey ventral premotor cortex. Eur J Neurosci 17:1703–1714

    Article  PubMed  Google Scholar 

  • Gilbert C, Bakan P (1973) Visual asymmetry in perception of faces. Neuropsychologia 11:355–362

    Article  PubMed  CAS  Google Scholar 

  • Grega DM, Sackeim HA, Sanchez E, Cohen BH, Hough S (1988) Perceiver bias in the processing of human faces: neuropsychological mechanisms. Cortex 24:91–117

    PubMed  CAS  Google Scholar 

  • Grossmann T, Johnson MH (2007) The development of the social brain in infancy. Eur J Neurosci 25:909–919

    Article  PubMed  Google Scholar 

  • Guo K, Benson PJ (1998) Involuntary eye movements in response to first- and second-order motion. Neuroreport 9:3543–3548

    Article  PubMed  CAS  Google Scholar 

  • Guo K, Robertson RG, Mahmoodi S, Tadmor Y, Young MP (2003) How do monkeys view faces? A study of eye movements. Exp Brain Res 150:363–374

    PubMed  Google Scholar 

  • Guo K, Mahmoodi S, Robertson RG, Young MP (2006) Longer fixation duration while viewing face images. Exp Brain Res 171:91–98

    Article  PubMed  Google Scholar 

  • Guo K (2007) Initial fixation placement in face images is driven by top–down guidance. Exp Brain Res 181:673–677

    Article  PubMed  Google Scholar 

  • Hamilton CR, Vermeire BA (1988) Complementary hemispheric-specialization in monkeys. Science 242:1691–1694

    Article  PubMed  CAS  Google Scholar 

  • Hare B, Brown M, Williamson C, Tomasello M (2002) The domestication of social cognition in dogs. Science 298:1634–1636

    Article  PubMed  CAS  Google Scholar 

  • Hare B, Tomasello M (2005) Human-like social skills in dogs. Trends Cogn Sci 9:439–444

    Article  PubMed  Google Scholar 

  • Hauser MD (1993) Right hemisphere dominance for the production for the production of facial expression in monkeys. Science 261:475–477

    Article  PubMed  CAS  Google Scholar 

  • Heath RL, Rouhana A, Ghanem DA (2005) Asymmetric bias in perception of facial affect among Roman and Arabic script readers. Laterality 10:51–64

    PubMed  Google Scholar 

  • Indersmitten T, Gur RC (2003) Emotion processing in chimeric faces: hemispheric asymmetries in expression and recognition of emotions. J Neurosci 23:3820–3825

    PubMed  CAS  Google Scholar 

  • Kendrick KM (2006) Brain asymmetries for face recognition and emotion control in sheep. Cortex 42:96–98

    Article  PubMed  Google Scholar 

  • Killeen PR (2005) An alternative to null-hypothesis significance tests. Psychol Sci 16:345–353

    Article  PubMed  Google Scholar 

  • Leonards U, Scott-Samuel NE (2005) Idiosyncratic initiation of saccadic face exploration in humans. Vision Res 45:2677–2684

    Article  PubMed  Google Scholar 

  • Leslie KR, Johnson-Frey SH, Grafton ST (2004) Functional imaging of the face and hand imitation: towards a motor theory of empathy. Neuroimage 21:601–607

    Article  PubMed  Google Scholar 

  • McKone E, Kanwisher N, Duchaine BC (2006) Can generic expertise explain special processing for faces? Trends Cogn Sci 11:8–15

    Article  PubMed  Google Scholar 

  • Mendelson MJ, Haith MM, Goldman-Rakic PS (1982) Face scanning and responsiveness to social cues in infant rhesus monkeys. Dev Psychol 18:222–228

    Article  Google Scholar 

  • Meints K, Plunkett K, Harris PL (1999) When does an ostrich become a bird? The role of typicality in early word comprehension. Dev Psychol 35:1072–1078

    Article  PubMed  CAS  Google Scholar 

  • Mertens I, Siegmund H, Grusser OJ (1993) Gaze motor asymmetries in the perception of faces during a memory task. Neuropsychologia 31:989–998

    Article  PubMed  CAS  Google Scholar 

  • Miklósi A, Kubinyi E, Topál J, Gácsi M, Virányi Z, Csányi V (2003) A simple reason for a big difference: Wolves do not look back at humans, but dogs do. Curr Biol 13:763–766

    Article  PubMed  Google Scholar 

  • Mondloch CJ, Maurer D, Ahola S (2006) Becoming a face expert. Psychol Sci 17:930–934

    Article  PubMed  Google Scholar 

  • Morris RD, Hopkins WD (1993) Perception of human chimeric faces by chimpanzees: evidence for a right hemisphere advantage. Brain Cognit 21:111–122

    Article  CAS  Google Scholar 

  • Nicholls MER, Roberts GR (2002) Can free-viewing perceptual asymmetries be explained by scanning, pre-motor or attentional biases? Cortex 38:113–136

    Article  PubMed  Google Scholar 

  • Niemeier M, Stojanoski B, Greco A (2007) Influence of time and spatial frequency on the perceptual bias: evidence for competition between hemispheres. Neuropsychologia 45:1029–1040

    Article  PubMed  Google Scholar 

  • Parr LA, Winslow JT, Hopkins WD (2000) Recognizing facial cues: individual discrimination by chimpanzees (Pan troglodytes and rhesus monkeys (Macaca mulatta). J Comp Psychol 114:1–14

    Article  Google Scholar 

  • Pascalis O, Demont E, de Haan M, Campbell R (2001) Recognition of faces of different species: a developmental study between 5 and 8 years of age. Infant Child Dev 10:39–45

    Article  Google Scholar 

  • Pascalis O, de Haan M, Nelson CA (2002) Is face processing species-specific during the first year of life? Science 14:199–209

    Google Scholar 

  • Philips ML, David AS (1997) Viewing strategies for simple and chimeric faces: an investigation of perceptual bias in normal and schizophrenic patients using visual scan paths. Brain Cognit 32:225–238

    Article  Google Scholar 

  • Poyser F, Caldwell C, Cobb M (2006) Dog paw preference shows liability and sex differences. Behav Processes 73:216–221

    Article  PubMed  Google Scholar 

  • Quaranta A, Siniscalchi M, Frate A, Vallortigara G (2004) Paw preference in dogs: relations between lateralised behaviour and immunity. Behav Brain Res 153:521–525

    Article  PubMed  CAS  Google Scholar 

  • Quaranta A, Siniscalchi M, Frate A, Iacoviello R, Buonavoglia C, Vallortigara G (2006) Lateralised behaviour and immune response in dogs: relations between paw preference and interferon-γ, interleukin-10 and IgG antibodies production. Behav Brain Res 166:236–240

    Article  PubMed  CAS  Google Scholar 

  • Quaranta A, Siniscalchi M, Vallortigara G (2007) Asymmetric tail-wagging responses by dogs to different emotive stimuli. Curr Bio 17:R199–R201

    Article  CAS  Google Scholar 

  • Quaranta A, Siniscalchi M, Albrizio M, Volpe S, Buonavoglia C, Vallortigara G (2008) Influence of behavioural lateralization on interleukin-2 and interleukin-6 gene expression in dogs before and after immunization with rabies vaccine. Behav Brain Res 186:256–260

    Article  PubMed  CAS  Google Scholar 

  • Rhodes G (1986) Perceptual asymmetries in face recognition. Brain Cognit 4:197–218

    Article  Google Scholar 

  • Rosenfeld SA, Van Hoesen GW (1979) Face recognition in the rhesus monkey. Neuropsychologia 17:503–509

    Article  PubMed  CAS  Google Scholar 

  • Rossion B, Gauthier I (2002) How does the brain process upright and inverted faces? Behav Cognit Neurosci Rev 1:63–75

    Article  Google Scholar 

  • Rossion B, Joyce CA, Cottrell GW, Tarr MJ (2003) Early lateralization and orientation tuning for face, word, and object processing in the visual cortex. NeuroImage 20:1609–1624

    Article  PubMed  Google Scholar 

  • Sovrano VA, Rainoldi C, Bisazza A, Vallortigara G (1999) Roots of brain specializations: preferential left-eye use during mirror-image inspection in six species of teleost fish. Behav Brain Res 106:175–180

    Article  Google Scholar 

  • Tan U (1987) Paw preferences in dogs. Int J Neurosci 32:825–829

    Article  PubMed  CAS  Google Scholar 

  • Tan U, Calsikan S (1987) Allometry and asymmetry in the dog brain: the right hemisphere is heavier regardless of paw preference. Int J Neurosci 35:189–194

    Article  PubMed  CAS  Google Scholar 

  • Tanaka J, Kiefer M, Bukach CM (2004) A holistic account of the own-race effect in face recognition: evidence from a cross-cultural study. Cognition 93:1–9

    Article  Google Scholar 

  • Tarr MJ, Cheng YD (2003) Learning to see faces and objects. Trends Cogn Sci 7:23–30

    Article  PubMed  Google Scholar 

  • Topál J, Gácsi M, Miklósi Á, Virányi Z, Kubinyi E, Csányi V (2005) Attachment to humans: a comparative study on hand-reared wolves and differently socialized dog puppies. Anim Behav 70:1367–1375

    Article  Google Scholar 

  • Vaid J, Singh M (1989) Asymmetries in the perception of facial affect: Is there an influence of reading habits? Neuropsychologia 27:1277–1287

    Article  PubMed  CAS  Google Scholar 

  • Valentine T (1988) Upside-down faces: a review of the effects of inversion upon face recognition. Br J Psychol 79:471–491

    PubMed  Google Scholar 

  • Vallortigara G (1992) Right hemisphere advantage for social recognition in the chick. Neuropsychologia 30:761–768

    Article  PubMed  CAS  Google Scholar 

  • Vallortigara G, Andrew RJ (1991) Lateralization of response by chicks to change in a model partner. Anim Behav 41:187–194

    Article  Google Scholar 

  • Vallortigara G, Andrew RJ (1994) Differential involvement of right and left hemisphere in individual recognition in the domestic chick. Behav Processes 33:41–58

    Article  Google Scholar 

  • Vallortigara G, Rogers LJ (2005) Survival with an asymmetrical brain: Advantages and disadvantages of cerebral lateralization. Behav Brain Sci 28:575–589

    PubMed  Google Scholar 

  • Vermeire BA, Hamilton CR (1998) Inversion effect for faces in split-brain monkeys. Neuropsychologia 36:1003–1014

    Article  PubMed  CAS  Google Scholar 

  • Vilà C, Savolainen P, Maldonado JE, Amorim IR, Rice JE, Honeycutt RL, Crandall KA, Lundeberg J, Wayne RK (1997) Multiple and ancient origins of the domestic dog. Science 276:1687–1689

    Article  PubMed  Google Scholar 

  • Virányi Z, Gácsi M, Kubinyi E, Topál J, Belényi B, Ujfalussy D, Miklósi A (2008) Comprehension of human pointing gestures in young human-reared wolves (Canis lupus) and dogs (Canis familiaris). Anim Cogn 11:373–387

    Article  PubMed  Google Scholar 

  • Wells DL (2003) Lateralised behaviour in the domestic dog, Canis familiaris. Behav Processes 61:27–35

    Article  PubMed  Google Scholar 

  • Yovel G, Kanwisher N (2005) The neural basis of the behavioral face-inversion effect. Curr Biol 15:2256–2262

    Article  PubMed  CAS  Google Scholar 

  • Zucca P, Sovrano VA (2008) Animal lateralization and social recognition: Quails use their left visual hemifield when approaching a companion and their right visual hemifield when approaching a stranger. Cortex 44:13–20

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Mills.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, K., Meints, K., Hall, C. et al. Left gaze bias in humans, rhesus monkeys and domestic dogs. Anim Cogn 12, 409–418 (2009). https://doi.org/10.1007/s10071-008-0199-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10071-008-0199-3

Keywords

Navigation