Skip to main content
Log in

Tool use as a way to assess cognition: how do captive chimpanzees handle the weight of the hammer when cracking a nut?

  • Original Paper
  • Published:
Animal Cognition Aims and scope Submit manuscript

Abstract

Tool use in apes has been considered a landmark in cognition. However, while most studies concentrate on mental operations, there are very few studies of apes’ cognition as expressed in manual skills. This paper proposes theoretical and methodological considerations on movement analysis as a way of assessing primate cognition. We argue that a privileged way of appraising the characteristics of the cognitive abilities involved in tool use lies at the functional level. This implies that we focus on how the action proceeds, and more precisely, on how the functional characteristics of the task are generated. To support our view, we present the results of an experiment with five captive chimpanzees investigating the way how chimpanzees adapt to hammers of various weights while cracking nuts. The movement performed in the hammering task is analyzed in terms of energy production. Results show that chimpanzees mobilise passive as well as active forces to perform the compliant movement, that is, they modulate the dynamics of the arm/tool system. A comparison between chimpanzees suggests that experience contributes to this skill. The results suggest that in tool use, movements are not key per se, but only in as much as they express underlying cognitive processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Conservative mechanics: we consider here the ideal situation where there is no friction and no dissipation of energy, i.e. the total amount of potential energy is transferred in kinetic energy and reverse.

  2. Artificial nuts could not be used in the analysis, as it is not possible to be sure of the strength of the closing. In addition the experimenter was giving "easy opening" artificial nut to a chimpanzee when he/she showed a decrease in interest as the artificial nut contained a fruit reward. This situation aroused the interest of the chimpanzees in the experiment.

  3. Different software could be used for such calculation and analysis. For this experiment we used integrated software developed by the second author.

  4. This model utilised for humans does minimise the weight of the chimpanzee's hand and this should be avoided in further studies. Here only juveniles took part in the study. We may consider that they do not have the adult anthropometric characteristics yet. The underestimation has relatively little or no consequence on parameters such as the ratio E k /E p . On the other hand, it does not change the significance of the comparison between hammer conditions.

  5. For example in a field experiment which took place in Bossou (Biro et al. 2003) the smallest stone hammers proposed to the chimpanzees to crack oil-palm, coula and panda nuts weighed 200 g, the largest weighing 5 kg. However, the study does not give the frequency of use of hammers depending on their weight. In another study, Boesch and Boesch reported that very few hammers less than 900 g were transported near the anvils. Anderson (1983) report use of 0.4–2.6 kg hammers in the Sapo forest. For Boesch et al. (1994) in the wild potential hammers weight ranges between 0.6 and 20 kg.

References

  • Ambrose SH (2001) Paleolithic technology and human evolution. Science 291:1748–1753

    Article  PubMed  CAS  Google Scholar 

  • Anderson ML (2003) Embodied cognition: a field guide. Artif Intell 149:91–130

    Article  Google Scholar 

  • Beatty H (1951) A note on the behavior of the chimpanzee. J Mammal 32:118

    Google Scholar 

  • Bernstein NA (1996) On dexterity and its development. In: Latash ML, Turvey MT (eds) Dexterity and its development. Lawrence Erlbaum Associates, Hillsdale, pp 1–235

    Google Scholar 

  • Biro D, Inoue-Nakamura N, Tonooka R, Yamakoshi G, Sousa C, Matsuzawa T (2003) Cultural innovation and transmission of tool use in wild chimpanzees: evidence from field experiments. Anim Cogn 6:213–223

    Article  PubMed  Google Scholar 

  • Biro D, Sousa C, Matsuzawa T (2006) Ontogeny and cultural propagation of tool use by wild chimpanzees at Bossou, Guinea: case studies in nut-cracking and leaf folding. In: Matsuzawa, Tomonaga, Tanaka (eds) Cognitive development in chimpanzees. Springer, Tokyo, pp 476–508

  • Biryukova L, Bril B (2008) Multijoint movement kinematics characterizes the level of motor skill: the case of stone-knapping in India. Motor Control 12:181–209

    PubMed  CAS  Google Scholar 

  • Boesch C (1978) Nouvelles observations sur les chimpanzés de la forêt de Taï (Côte -d’Ivoire). La Terre et la Vie 32:195–201

    Google Scholar 

  • Boesch C (1991) Handedness in wild chimpanzees. Int J Primatol 12(6):541–558

    Article  Google Scholar 

  • Boesch C, Boesch H (1981) Sex differences in the use of natural hammers by wild chimpanzees: a preliminary report. J Hum Evol 10:585–593

    Article  Google Scholar 

  • Boesch C, Boesch H (1982) Optimisation of nut-cracking with natural hammers by wild chimpanzees. Behaviour 83:265–286

    Article  Google Scholar 

  • Boesch C, Boesch H (1984) The nut-cracking behavior and its nutritional importance in wild chimpanzees in the Taï National Park, Ivory Coast. Int J Primatol 5:323

    Google Scholar 

  • Boesch C, Boesch H (1993) Different hand postures for pounding nuts with natural hammers by wild chimpanzees. In: Preuschoft H, Chivers DJ (eds) Hands of primates. Sringer, Wien, pp 31–43

    Google Scholar 

  • Bril B, Roux V, Dietrich G (2000) Habiletés impliquées dans la taille des perles en roches dure : caractéristiques motrices et cognitives d’une action située complexe. In: Roux V (ed) Les perles de Cambay—Des pratiques techniques aux technosystèmes de l’Orient ancien. Éditions de la MSH, Paris, pp 211–329

    Google Scholar 

  • Bril B, Foucart J (2005) Enacting the perception of the affordances of potential tools II: the case of children hammering. In: Heft H, Marsh KL (eds) Studies in perception & action VIII—thirteenth international conference on perception and action. LEA, Mahwah, pp 3–6

    Google Scholar 

  • Bril B, Roux V, Dietrich G (2005) Stone knapping: Khambhat (India), a unique opportunity? In: Roux V, Bril B (eds) Stone knapping, the necessary conditions for an uniquely hominid behaviour. McDonald Institute Monograph Series, Cambridge, pp 53–72

    Google Scholar 

  • Byrne R (2005) The manual skills and cognition that lie behind hominid tool use. In: Russon AE, Begun DR (eds) Evolution of thought—evolutionary origins of great ape intelligence. Cambridge University Press, Cambridge, pp 31–44

    Google Scholar 

  • Call J, Tomasello M (1994) The social learning of tool use by orangutans (Pongo pygmaeus). Hum Evol 9:297–313

    Article  Google Scholar 

  • Chandler RF, Clauser CE, McConvile JT, Reynolds HM, Young JW (1975) Investigation of inertial properties of the human body. AMRL-TR-137, AD-AO16 485. Aerospace Medical Research Laboratories, Aerospace Medical Division, Wright-Patterson Air Force Base, Ohio, USA

  • Chiel HJ, Beer RD (1997) The brain has a body: adaptive behavior emerges from interactions of nervous system, body and environment. Trends Neurosci 20:553–557

    Article  PubMed  CAS  Google Scholar 

  • Christel MI, Billard A (2002) Comparison between macaques’ and humans’ kinematics of prehension: the role of morphological differences and control mechanisms. Behav Brain Res 131:169–184

    Article  PubMed  Google Scholar 

  • Dempster WT (1939) Space requirements of the seated operator. WADC Technical Report, Wright-Patterson Air Force Base

  • Foucart J (2006) Etude comparée des habiletés opératoires et motrices de l’homme et du chimpanzé pour une utilisation d’outils trans-primatique : le cassage de noix. PhD thesis. École des Hautes Études en Sciences Sociales, Paris

  • Foucart J, Bril B, Hirata S, Morimura N, Houki C, Ueno Y, Matsuzawa T (2005a) A preliminary analysis of nut-cracking movements in a captive chimpanzee: adaptation to the properties of tools and nuts. In: Roux V, Bril B (eds) Stone knapping, the necessary conditions for an uniquely hominid behaviour. McDonald Institute Monograph Series, Cambridge, pp 147–158

    Google Scholar 

  • Foucart J, Hirata S, Fuwa K, Bril B (2005b) Enacting the perception of the affordances of potential tools II: the case of chimpanzees nut-cracking. In: Heft H, Marsh KL (eds) Studies in perception & action VIII—thirteenth international conference on perception and action. LEA, Mahwah, pp 10–14

    Google Scholar 

  • Fushimi T, Sakura O, Matsuzawa T, Ohno H, Sugiyama Y (1991) Nut-cracking behavior of wild chimpanzees (Pan troglodytes) in Bossou, Guinea (West Africa). In: Ehara A, Kimura T, Takenaka O, Iwamoto M (eds) Primatology Today. Elsevier, Amsterdam, pp 695–696

    Google Scholar 

  • Fujita K, Kuroshima H, Asai S (2003) How do tufted capuchin monkeys (Cebus apella) understand causality involved in tool use? J Exp Psychol Anim Behav Process 29:233–242

    Article  PubMed  Google Scholar 

  • Gibson JJ (1977) The theory of affordances. In: Shaw R, Bransford J (eds) Perceiving, acting, and knowing. Lawrence Erlbaum Associates, Hillsdale, pp 67–82

    Google Scholar 

  • Gibson JJ (1986) The ecological approach to visual perception. Houghton Mifflin, Boston

    Google Scholar 

  • Günther MM, Boesch C (1993) Energetic cost of nut-cracking behaviour in wild chimpanzees. In: Preuschoft H, Chivers DJ (eds) Hands of primates. Springer, Wien, pp 109–129

    Google Scholar 

  • Hanavan EP (1964) A mathematical model of the human body. AMRL-TR-64–102, AD-608–463. Aerospace Medical Research Laboratories. Wright-Patterson Air Force Base, Ohio

    Google Scholar 

  • Hannah AC, McGrew WC (1987) Chimpanzees using stones to crack open oil palm nuts in Liberia. Primates 28:31–46

    Article  Google Scholar 

  • Hauser MD (1997) Artifactual kinds and functional design features: what a primate understands without language. Cognition 64:285–308

    Article  PubMed  CAS  Google Scholar 

  • Hayashi M, Mizuno Y, Matsuzawa T (2005) How does stone-tool use emerge? Introduction of stones and nuts to naïve chimpanzees in captivity. Primates 46:91–102

    Article  PubMed  Google Scholar 

  • Hogan N (1985) The mechanics of multi-joint posture and movement. Biol Cybern 52:315–331

    Article  PubMed  CAS  Google Scholar 

  • Inoue-Nakamura N, Matsuzawa T (1997) Development of stone tool use by wild chimpanzees (Pan troglodytes). J Comp Psychol 111:159–173

    Article  PubMed  CAS  Google Scholar 

  • Johnson-Frey SH (2003) What’s so special about tool use? Neuron 39:201–204

    Article  PubMed  CAS  Google Scholar 

  • Köhler W (1925) The mentality of apes. Routledge & Kegan Paul, London

    Google Scholar 

  • Kunde W (2001) Exploring the hyphen in ideo-motor action. Commentary on Homel et al.: theory of event coding. Behav Brain Sci 24:891–892

    Google Scholar 

  • Marchant LF, McGrew WC (2005) Percussive technology: Chimpanzee baobab smashing and evolutionary modelling of hominin knapping. In: Roux V, Bril B (eds) Stone knapping the necessary conditions for an uniquely hominin behaviour. McDonald Institute Monograph Series, Cambridge, pp 341–350

    Google Scholar 

  • Matsuzawa T (1994) Field experiments on use of stone tools by chimpanzees in the wild. In: Wrangham RW, McGrew W, de Waal FBM, Heltne PG (eds) Chimpanzee cultures. Harvard University Press, Cambridge, pp 351–370

    Google Scholar 

  • Michaels CF (2003) Affordances: four points of debates. Ecol Psychol 15:135–148

    Article  Google Scholar 

  • Nagell K, Olguin RS, Tomasello M (1993) Processes of social learning in the tool use of chimpanzees (Pan troglodytes) and human children (Homo sapiens). J Comp Psychol 107:174–186

    Article  PubMed  CAS  Google Scholar 

  • Newell KM (1986) Constraints on the development of coordination. In: Wade MG, Whiting HT (eds) Motor development in children: aspects of coordination and control. Martinus Nijhoff, Dordrecht, pp 341–360

    Google Scholar 

  • Newell KM (1996) Change in movement and skill: learning, retention and transfer. In: Latash ML, Turvey MT (eds) Dexterity and its development. Lawrence Erlbaum Associates, Hillsdale, pp 393–429

    Google Scholar 

  • Pourcelot P, Audigie F, Degueurce C, Geiger D, Denoix JM (2000) A method to synchronise cameras using the direct linear transformation technique. J Biomech 33:1751–1754

    Article  PubMed  CAS  Google Scholar 

  • Povinelli D (2000) Folk physics for apes. Oxford University Press, Oxford

    Google Scholar 

  • Rahm U (1971) L’emploi d’outils par les chimpanzés de l’ouest de la Côte-d’Ivoire. Terre et Vie 25:506–509

    Google Scholar 

  • Reed ES (1988) Applying the theory of action systems to the study of motor skills. In: Meijer OG, Roth K (eds) Complex movement behaviour: the motor-action controversy. Elsevier, Amsterdam, pp 45–86

    Chapter  Google Scholar 

  • Reed ES (1989) Changing theories of postural development. In: Woollacott M, Shumway-Cook A (eds) The development of posture across the life span. University of South Carolina Press, Columbia, pp 3–24

    Google Scholar 

  • Reed ES (1996) Encountering the world. Oxford University Press, Oxford

    Google Scholar 

  • Roux V, Bril B (eds) (2005) Stone knapping, the necessary conditions for an uniquely hominin behaviour. McDonald Institute Monograph Series, Cambridge

  • Roux V, Bril B, Dietrich G (1995) Skills and learning difficulties involved in stone knapping: the case of stone-bead knapping in Khambhat, India. World Archaeol 27:63–87

    Article  Google Scholar 

  • Roy AC, Paulignan Y, Farne A, Jouffrais C, Boussaoud D (2000) Hand kinematics during reaching and grasping in the macaque monkey. Behav Brain Res 117:75–82

    Article  PubMed  CAS  Google Scholar 

  • Schick K, Toth N, Garufi G (1999) Continuing investigation into the stone tool-making and tool using capabilities of a Bonobo (Pan paniscus). J Archaeol Sci 26:821–832

    Article  Google Scholar 

  • Schmidt RA (1975) A schema theory of discrete motor skill learning. Psychol Rev 82:225–260

    Article  Google Scholar 

  • Smitsman A (1997) The development of tool-use: changing boundaries between organism and environment. In: Dent-Read C, Zukow-Goldring P (eds) Evolving explanations of development. Ecological approaches to organism-environment systems. Am Psychol Assoc, Washington, pp 301–333

    Chapter  Google Scholar 

  • Smitsman A, Cox R, Bongers R (2005) Action dynamics in tool use. In: Roux V, Bril B (eds) Stone knapping, the necessary conditions for a uniquely hominid behaviour. McDonald Institute Monograph Series, Cambridge, pp 129–144

    Google Scholar 

  • Sugiyama Y (1981) Observations of the population dynamics and behavior of wild chimpanzees at Bossou, Guinea, in 1979–1980. Primates 22:435–444

    Article  Google Scholar 

  • Sugiyama Y (1993) Local variation of tools and tool use among wild chimpanzee populations. In: Berthelet A, Chavaillon J (eds) The use of tools by human and non-human primates. Clarendon Press, Oxford, pp 175–187

    Google Scholar 

  • Sugiyama Y, Koman J (1979) Social structure and dynamics of wild chimpanzees at Bossou, Guinea. Primates 20:323–339

    Article  Google Scholar 

  • Stoffregen TA (2000) Affordance and events. Ecol Psychol 12:1–28

    Article  Google Scholar 

  • Struhsaker TT, Hunkeler P (1971) Evidence of tool-using by chimpanzees in the Ivory Coast. Folia Primatol 15:212–219

    Article  PubMed  CAS  Google Scholar 

  • Thelen E (1995) Motor development: a new synthesis. Am Psychol 50:79–95

    Article  PubMed  CAS  Google Scholar 

  • Toth N, Scick K, Semaw S (2006) A comparative study of the stone tool-making of Pan, Australopithecus, and Homo sapiens. In: Toth N, Schick K (eds) The Oldowan: case studies into the earliest stone-age. Stone Age Institute, Bloomington, pp 155–222

    Google Scholar 

  • Valleron AJ (2005) Introduction à la Biostatistique. Masson, Paris

    Google Scholar 

  • Visalberghi E, Limongelli L (1994) Lack of comprehension of cause-effect relations in tool-using capuchin monkeys (Cebus apella). J Comp Psychol 108:15–22

    Article  PubMed  CAS  Google Scholar 

  • Visalberghi E, Tomasello M (1998) Primate causal understanding in the physical and psychological domains. Behav Process 42:189–203

    Article  Google Scholar 

  • Warren W (1991) The perception-action coupling. In: Bloch H, Bertenthal BI (eds) Sensory-motor organizations and development in infancy and early childhood. Kluwer, Dordrecht, pp 23–37

    Google Scholar 

  • Whitesides GH (1985) Nut-cracking by wild chimpanzees in Sierra Leone, West Africa. Primates 26(1):91–94

    Article  Google Scholar 

  • Winter D (1979) Biomechanics and motor control of human movement. Wiley, Hoboken

    Google Scholar 

  • Wynn T, McGrew WC (1989) An ape’s view of the Oldowan. Man 24:383–398

    Article  Google Scholar 

  • Yeadon MR, King MA (1999) A method for synchronising digitised video data. J Biomech 32:983–986

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z (1999) A flexible new technique for camera calibration. Technical Report MSR-TR-98-71. Microsoft Research, Microsoft Corporation, One Microsoft Way Redmond, WA 98052–6399, USA

Download references

Acknowledgments

We would like to thank three anonymous reviewers for very helpful comments and suggestions. We are very grateful to Sandra Martelli for information on anthropometric data on Chimpanzees. This research has been supported by the Action Concertée Incitative TTT P7802 n° 02 2 0440 from the French Ministère Délégué à la Recherche et aux Nouvelles Technologies and the Ministry of Education Culture, Sports Science and Technology of Japan (grant for the Biodiversity Research of the 21st century COE, A14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blandine Bril.

Electronic supplementary material

Below is the link to the electronic supplementary material.

MOESM1 Example of a chimpanzee cracking a Macadamia nut and a Brazil nut with a hammer weighing 0.327 kg (MPG 6102 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bril, B., Dietrich, G., Foucart, J. et al. Tool use as a way to assess cognition: how do captive chimpanzees handle the weight of the hammer when cracking a nut?. Anim Cogn 12, 217–235 (2009). https://doi.org/10.1007/s10071-008-0184-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10071-008-0184-x

Keywords

Navigation