Skip to main content

Advertisement

Log in

Neurotrophin blood-based gene expression and social cognition analysis in patients with autism spectrum disorder

  • Original Article
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

Autism spectrum disorders (ASD) comprise neurodevelopmental disorders with clinical onset during the first years of life. The identification of peripheral biomarkers could significantly impact diagnosis and an individualized, early treatment. Although the aetiology of ASD remains poorly understood, there is increasing evidence that neurotrophins and their receptors represent a group of candidate genes for ASD pathophysiology and biomarker research. Total messenger RNA (mRNA) from whole blood was obtained from adolescents and adults diagnosed as ASD (n = 21) according to DSM-IV criteria and confirmed by the Autism Diagnostic Observation Schedule (ADOS) and Autism Diagnostic Interview-Revised (ADI-R) algorithms, as well as healthy controls (n = 10). The mRNA expression of neurotrophins (BDNF, NT3 and NT4) and their receptors (TrkA, TrkB and p75 NTR) was determined by quantitative real-time polymerase chain reaction (qRT-PCR). Moreover, social cognition abilities of ASD patients and controls were determined according to three Theory of Mind (ToM) tests (Reading the Mind in the Eyes, Faux pas, and Happé stories). The NT3 and NT4 mRNA expression in the whole blood was significantly lower in ASD compared to healthy controls, while p75NTR was higher (P < 0.005). In addition, lower scores in three of the ToM tests were observed in ASD subjects compared to controls. A significant (P < 0.005) ToM impairment in Happé stories test was demonstrated in ASD. Nevertheless, no correlations were observed between neurotrophins and their receptors expressions and measures of ToM. Given their potential as peripheral blood-based biomarkers, NT3, NT4 and p75 NTR mRNA expression patterns may be useful tools for a more personalized diagnostics and therapy in ASD. Further investigations with larger numbers of samples are needed to verify these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Baird G, Simonoff E, Pickles A, Chandler S, Loucas T, Meldrum D et al (2006) Prevalence of disorders of the autism spectrum in a population cohort of children in South Thames: the Special Needs and Autism Project (SNAP). Lancet 368(9531):210–215

    Article  PubMed  Google Scholar 

  2. Howlin P, Goode S, Hutton J, Rutter M (2004) Adult outcome for children with autism. J Child Psychol Psychiatry 45(2):212–229

    Article  PubMed  Google Scholar 

  3. Zwaigenbaum L, Bryson S, Rogers T, Roberts W, Brian J, Szatmari P (2005) Behavioral manifestations of autism in the first year of life. Int J Dev Neurosci 23(2–3):143–152

    Article  PubMed  Google Scholar 

  4. Volkmar FR, Lord C, Bailey A, Schultz RT, Klin A (2004) Autism and pervasive developmental disorders. J Child Psychol Psychiatry 45(1):135–170

    Article  PubMed  Google Scholar 

  5. Pardo CA, Eberhart CG (2007) The neurobiology of autism. Brain Pathol 17(4):434–447

    Article  CAS  PubMed  Google Scholar 

  6. Belmonte MK, Allen G, Beckel-Mitchener A, Boulanger LM, Carper RA, Webb SJ (2004) Autism and abnormal development of brain connectivity. J Neurosci 24(42):9228–9231

    Article  CAS  PubMed  Google Scholar 

  7. Polleux F, Lauder JM (2004) Toward a developmental neurobiology of autism. Ment Retard Dev Disabil Res Rev 10(4):303–317

    Article  PubMed  Google Scholar 

  8. Folstein SE, Rosen-Sheidley B (2001) Genetics of autism: complex aetiology for a heterogeneous disorder. Nat Rev Genet 2(12):943–955

    Article  CAS  PubMed  Google Scholar 

  9. Freitag CM, Agelopoulos K, Huy E, Rothermundt M, Krakowitzky P, Meyer J, Deckert J, von Gontard A, Hohoff C (2010) Adenosine A(2A) receptor gene (ADORA2A) variants may increase autistic symptoms and anxiety in autism spectrum disorder. Eur Child Adolesc Psychiatry 19(1):67–74

    Article  PubMed  Google Scholar 

  10. Ruggeri B, Sarkans U, Schumann G, Persico AM (2014) Biomarkers in autism spectrum disorder: the old and the new. Psychopharmacology (Berl) 231(6):1201–1216

    Article  CAS  Google Scholar 

  11. Glatt SJ, Tsuang MT, Winn M, Chandler SD, Collins M, Lopez L, Weinfeld M, Carter C, Schork N, Pierce K, Courchesne E (2012) Blood-based gene expression signatures of infants and toddlers with autism. J Am Acad Child Adolesc Psychiatry 51(9):934.e2–944.e2

    Article  Google Scholar 

  12. Kong SW, Collins CD, Shimizu-Motohashi Y, Holm IA, Campbell MG, Lee IH, Brewster SJ, Hanson E, Harris HK, Lowe KR, Saada A, Mora A, Madison K, Hundley R, Egan J, McCarthy J, Eran A, Galdzicki M, Rappaport L, Kunkel LM, Kohane IS (2012) Characteristics and predictive value of blood transcriptome signature in males with autism spectrum disorders. PLoS One 7(12):e4947

    Google Scholar 

  13. Nickl-Jockschat T, Michel TM (2011) The role of neurotrophic factors in autism. Mol Psychiatry 16(5):478–490

    Article  CAS  PubMed  Google Scholar 

  14. Lang UE, Jockers-Scherübl MC, Hellweg R (2004) State of the art of the neurotrophin hypothesis in psychiatric disorders: implications and limitations. J Neural Transm 111(3):387–411

    Article  CAS  PubMed  Google Scholar 

  15. Leibrock J, Lottspeich F, Hohn A, Hofer M, Hengerer B, Masiakowski P et al (1989) Molecular cloning and expression of brain-derived neurotrophic factor. Nature 341(6238):149–152

    Article  CAS  PubMed  Google Scholar 

  16. Ernfors P, Ibanez CF, Ebendal T, Olson L, Persson H (1990) Molecular cloning and neurotrophic activities of a protein with structural similarities to nerve growth factor: developmental and topographical expression in the brain. Proc Natl Acad Sci 87(14):5454–5458

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Klein R, Nanduri V, Jing S, Lamballe F, Tapley P, Bryant S et al (1991) The trkB tyrosine protein kinase is a receptor for brain-derived neurotrophic factor and neurotrophin-3. Cell 66(2):395–403

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Ip NY, Ibáñez CF, Nye SH, Mcclain J, Jones PF, Gies DR et al (1992) Mammalian neurotrophin-4: structure, chromosomal localization, tissue distribution, and receptor specificity. Proc Natl Acad Sci U S A 89(7):3060–3064

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Klein R, Jing S, Nanduri V, O’Rourke E, Barbacid M (1991) The trk proto-oncogene encodes a receptor for nerve growth factor. Cell 65(1):189–197

    Article  CAS  PubMed  Google Scholar 

  20. Lamballe F, Klein R, Barbacid M (1991) trkC, a new member of the trk family of tyrosine protein kinases, is a receptor for neurotrophin-3. Cell 66(5):967–979

    Article  CAS  PubMed  Google Scholar 

  21. Soppet D, Escandon E, Maragos J, Middlemas DS, Reid SW, Blair J et al (1991) The neurotrophic factors brain-derived neurotrophic factor and neurotrophin-3 are ligands for the trkB tyrosine kinase receptor. Cell 65(5):895–903

    Article  CAS  PubMed  Google Scholar 

  22. Squinto SP, Stitt TN, Aldrich TH, Davis S, Bianco SM, Radziejewski C et al (1991) trkB encodes a functional receptor for brain-derived neurotrophic factor and neurotrophin-3 but not nerve growth factor. Cell 65(5):885–893

    Article  CAS  PubMed  Google Scholar 

  23. Hallböök F, Ibáñez CF, Persson H (1991) Evolutionary studies of the nerve growth factor family reveal a novel member abundantly expressed in Xenopus ovary. Neuron 6(5):845–858

    Article  PubMed  Google Scholar 

  24. Lee KF, Bachman K, Landis S, Jaenisch R (1994) Dependence on p75 for innervation of some sympathetic targets. Science 263(5152):1447–1449

    Article  CAS  PubMed  Google Scholar 

  25. Connolly AM, Chez M, Streif EM, Keeling RM, Golumbek PT, Kwon JM et al (2006) Brain-derived neurotrophic factor and autoantibodies to neural antigens in sera of children with autistic spectrum disorders, Landau-Kleffner syndrome, and epilepsy. Biol Psychiatry 59(4):354–363

    Article  CAS  PubMed  Google Scholar 

  26. Miyazaki K, Narita N, Sakuta R, Miyahara T, Naruse H, Okado N et al (2004) Serum neurotrophin concentrations in autism and mental retardation: a pilot study. Brain Dev 26(5):292–295

    Article  PubMed  Google Scholar 

  27. Nelson KB, Grether JK, Croen LA, Dambrosia JM, Dickens BF, Jelliffe LL et al (2001) Neuropeptides and neurotrophins in neonatal blood of children with autism or mental retardation. Ann Neurol 49(5):597–606

    Article  CAS  PubMed  Google Scholar 

  28. Perry EK (2001) Cholinergic activity in autism: abnormalities in the cerebral cortex and basal forebrain. Am J Psychiatry 158(7):1058–1066

    Article  CAS  PubMed  Google Scholar 

  29. Correia CT, Coutinho AM, Sequeira AF, Sousa IG, Lourenço Venda L, Almeida JP et al (2010) Increased BDNF levels and NTRK2 gene association suggest a disruption of BDNF/TrkB signaling in autism. Genes Brain Behav 9(7):841–848

    Article  CAS  PubMed  Google Scholar 

  30. Hashimoto K, Iwata Y, Nakamura K, Tsujii M, Tsuchiya KJ, Sekine Y et al (2006) Reduced serum levels of brain-derived neurotrophic factor in adult male patients with autism. Prog Neuropsychopharmacol Biol Psychiatry 30(8):1529–1531

    Article  CAS  PubMed  Google Scholar 

  31. Abdallah MW, Mortensen EL, Greaves-Lord K, Larsen N, Bonefeld-Jørgensen EC, Nørgaard-Pedersen B et al (2013) Neonatal levels of neurotrophic factors and risk of autism spectrum disorders. Acta Psychiatr Scand 128(1):61–69

    Article  CAS  PubMed  Google Scholar 

  32. Taurines R, Segura M, Schecklmann M, Albantakis L, Grünblatt E, Walitza S, Jans T, Lyttwin B, Haberhausen M, Theisen FM, Martin B, Briegel W, Thome J, Schwenck C, Romanos M, Gerlach M (2014) Altered peripheral BDNF mRNA expression and BDNF protein concentrations in blood of children and adolescents with autism spectrum disorder. J Neural Transm 121(9):1117–1128

    Article  CAS  PubMed  Google Scholar 

  33. Viding E, Blakemore SJ (2007) Endophenotype approach to developmental psychopathology: implications for autism research. Behav Genet 37(1):51–60

    Article  PubMed  Google Scholar 

  34. Baron-Cohen S (1991) The theory of mind deficit in autism: how specific is it? Br J Dev Psychol 9:301–314

    Article  Google Scholar 

  35. Happé FG (1994) An advanced test of theory of mind: understanding of story characters’ thoughts and feelings by able autistic, mentally handicapped, and normal children and adults. J Autism Dev Disord 24(2):129–154

    Article  PubMed  Google Scholar 

  36. Dawson G, Carver L, Meltzoff AN, Panagiotides H, McPartland J, Webb SJ (2002) Neural correlates of face and object recognition in young children with autisms spectrum disorder, developmental delay, and typical development. Child Dev 73(3):700–717

    Article  PubMed Central  PubMed  Google Scholar 

  37. Pierce K, Muller RA, Ambrose J, Allen G, Curchesne E (2001) Face processing occurs outside the fusiform “face area” in autism: evidence from function MRI. Brain 124(Pt 10):2059–2073

    Article  CAS  PubMed  Google Scholar 

  38. Karege F, Schwald M, Cisse M (2002) Postnatal developmental profile of brain-derived neurotrophic factor in rat brain and platelets. Neurosci Lett 328(3):261–264

    Article  CAS  PubMed  Google Scholar 

  39. Katoh-Semba R, Wakako R, Komori T, Shigemi H, Miyazaki N, Ito H, Kumagai T, Tsuzuki M, Shigemi K, Yoshida F, Nakayama A (2007) Age-related changes in BDNF protein levels in human serum: differences between autism cases and normal controls. Int J Dev Neurosci 25(6):367–372

    Article  CAS  PubMed  Google Scholar 

  40. Lord C, Rutter M, Couteur A (1994) Autism diagnostic interview-revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord 24(5):659–685

    Article  CAS  PubMed  Google Scholar 

  41. Lord C, Risi S, Lambrecht L, Cook EH, Leventhal BL, Dilavore PC et al (2000) The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord 30(3):205–223

    Article  CAS  PubMed  Google Scholar 

  42. Baron-Cohen S, Wheelwright S, Hill J, Raste Y, Plumb I (2001) The “Reading the Mind in the Eyes” test revised version: a study with normal adults, and adults with Asperger syndrome or high-functioning autism. J Child Psychol Psychiatry 42(2):241–251

    Article  CAS  PubMed  Google Scholar 

  43. Baron-Cohen S, Ring HA, Wheelwright S, Bullmore ET, Brammer MJ, Simmons A et al (1999) Social intelligence in the normal and autistic brain: an fMRI study. Eur J Neurosci 11(6):1891–1898

    Article  CAS  PubMed  Google Scholar 

  44. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7), RESEARCH0034

    Article  PubMed Central  PubMed  Google Scholar 

  45. Tostes MH, Teixeira HC, Gattaz WF, Brandão MA, Raposo NR (2012) Altered neurotrophin, neuropeptide, cytokines and nitric oxide levels in autism. Pharmacopsychiatry 45(6):241–243

    Article  CAS  PubMed  Google Scholar 

  46. Sajdel-Sulkowska EM, Xu M, McGinnis W, Koibuchi N (2011) Brain region-specific changes in oxidative stress and neurotrophin levels in autism spectrum disorders (ASD). Cerebellum 10(1):43–48

    Article  CAS  PubMed  Google Scholar 

  47. Xu M, Sajdel-Sulkowska EM, Iwasaki T, Koibuchi N (2013) Aberrant cerebellar neurotrophin-3 expression induced by lipopolysaccharide exposure during brain development. Cerebellum 12(3):316–318

    Article  CAS  PubMed  Google Scholar 

  48. Sherrard RM, Bower AJ (2002) Climbing fiber development: do neurotrophins have a part to play? Cerebellum 1(4):265–275

    Article  CAS  PubMed  Google Scholar 

  49. Whitney ER, Kemper TL, Rosene DL, Bauman ML, Blatt GJ (2009) Density of cerebellar basket and stellate cells in autism: evidence for a late developmental loss of Purkinje cells. J Neurosci Res 87(10):2245–2254

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Ritvo ER, Freeman BJ, Scheibel AB, Duong T, Robinson H, Guthrie D, Ritvo A (1986) Lower Purkinje cell counts in the cerebella of four autistic subjects: initial findings of the UCLA-NSAC Autopsy Research Report. Am J Psychiatry 143(7):862–866

    Article  CAS  PubMed  Google Scholar 

  51. Mount HT, Dreyfus CF, Black IB (1994) Neurotrophin-3 selectively increases cultured Purkinje cell survival. Neuroreport 5(18):2497–2500

    Article  CAS  PubMed  Google Scholar 

  52. Sudarov A (2013) Defining the role of cerebellar Purkinje cells in autism spectrum disorders. Cerebellum 12(6):950–955

    Article  PubMed Central  PubMed  Google Scholar 

  53. Bauman ML, Kemper TL (2005) Neuroanatomic observations of the brain in autism: a review and future directions. Int J Dev Neurosci 23(2–3):183–187

    Article  PubMed  Google Scholar 

  54. Coulson EJ (1999) p75 neurotrophin receptor-mediated neuronal death is promoted by Bcl-2 and prevented by Bcl-xL. J Biol Chem [Internet] 274(23):16387–16391

    Article  CAS  Google Scholar 

  55. Frade JM, Rodríguez-Tébar A, Barde YA (1996) Induction of cell death by endogenous nerve growth factor through its p75 receptor. Nature 383(6596):166–168

    Article  CAS  PubMed  Google Scholar 

  56. Friedman WJ, Greene LA (1999) Neurotrophin signaling via Trks and p75. Exp Cell Res 253(1):131–142

    Article  CAS  PubMed  Google Scholar 

  57. Lee R, Kermani P, Teng KK, Hempstead BL (2001) Regulation of cell survival by secreted proneurotrophins. Science 294(5548):1945–1948

    Article  CAS  PubMed  Google Scholar 

  58. Volosin M, Song W, Almeida RD, Kaplan DR, Hempstead BL, Friedman WJ (2006) Interaction of survival and death signaling in basal forebrain neurons: roles of neurotrophins and proneurotrophins. J Neurosci 26(29):7756–7766

    Article  CAS  PubMed  Google Scholar 

  59. De Graaf-Peters VB, Hadders-Algra M (2006) Ontogeny of the human central nervous system: what is happening when? Early Hum Dev 82(4):257–266

    Article  PubMed  Google Scholar 

  60. Wei H, Alberts I, Li X (2014) The apoptotic perspective of autism. Int J Dev Neurosci 36:13–18

    Article  PubMed  Google Scholar 

  61. Sheikh AM, Malik M, Wen G, Chauhan A, Chauhan V, Gong CX, Liu F, Brown WT, Li X (2010) BDNF-Akt-Bcl2 antiapoptotic signaling pathway is compromised in the brain of autistic subjects. J Neurosci Res 88(12):2641–2647

    CAS  PubMed  Google Scholar 

  62. Siniscalco D, Sapone A, Giordano C, Cirillo A, de Novellis V, de Magistris L, Rossi F, Fasano A, Maione S, Antonucci N (2012) The expression of caspases is enhanced in peripheral blood mononuclear cells of autism spectrum disorder patients. J Autism Dev Disord 42(7):1403–1410

    Article  PubMed  Google Scholar 

  63. Malik M, Sheikh AM, Wen G, Spivack W, Brown WT, Li X (2011) Expression of inflammatory cytokines, Bcl2 and cathepsin D are altered in lymphoblasts of autistic subjects. Immunobiology 216(1–2):80–85

    Article  CAS  PubMed  Google Scholar 

  64. Benedetti M, Levi A, Chao MV (1993) Differential expression of nerve growth factor receptors leads to altered binding affinity and neurotrophin responsiveness. Proc Natl Acad Sci U S A 90(16):7859–7863

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Verdi JM, Birren SJ, Ibáñez CF, Persson H, Kaplan DR, Benedetti M, Chao MV, Anderson DJ (1994) p75LNGFR regulates Trk signal transduction and NGF-induced neuronal differentiation in MAH cells. Neuron 12(4):733–745

    Article  CAS  PubMed  Google Scholar 

  66. Gottesman II, Gould TD (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 160:636–645

    Article  PubMed  Google Scholar 

  67. Warrier V, Baron-Cohen S, Chakrabarti B (2013) Genetic variation in GABRB3 is associated with Asperger syndrome and multiple endophenotypes relevant to autism. Mol Autism 4(1):48

    Article  PubMed Central  PubMed  Google Scholar 

  68. Baron-Cohen S, O’Riordan M, Stone V, Jones R, Plaisted K (1999) Recognition of faux pas by normally developing children and children with Asperger syndrome or high-functioning autism. J Autism Dev Disord 29(5):407–418

    Article  CAS  PubMed  Google Scholar 

  69. Kaland N, Moller-Nielsen A, Callesen K, Mortensen EL, Gottlieb D, Smith L (2002) A new ‘advanced’ test of theory of mind: evidence from children and adolescents with Asperger syndrome. J Child Psychol Psychiatry 43(4):517–528

    Article  PubMed  Google Scholar 

  70. Spek AA, Scholte EM, Van Berckelaer-Onnes IA (2010) Theory of mind in adults with HFA and Asperger syndrome. J Autism Dev Disord 40(3):280–289

    Article  PubMed  Google Scholar 

  71. Zalla T, Sav AM, Stopin A, Ahade S, Leboyer M (2009) Faux pas detection and intentional action in Asperger Syndrome. A replication on a french sample. J Autism Dev Disord 39(2):373–382

    Article  PubMed  Google Scholar 

  72. Tager-Flusberg H, Sullivan K (2000) A componential view of theory of mind: evidence from Williams syndrome. Cognition 76(1):59–90

    Article  CAS  PubMed  Google Scholar 

  73. Ponnet KS, Roeyers H, Buysse A, De Clercq A, Van der Heyden E (2004) Advanced mind-reading in adults with Asperger syndrome. Autism 8(3):249–266

    Article  PubMed  Google Scholar 

  74. Kaland N, Callesen K, Møller-Nielsen A, Mortensen EL, Smith L (2008) Performance of children and adolescents with Asperger syndrome or high-functioning autism on advanced theory of mind tasks. J Autism Dev Disord 38(6):1112–1123

    Article  PubMed  Google Scholar 

  75. Scaccianoce S, Del Bianco P, Paolone G, Caprioli D, Modafferi AM, Nencini P, Badiani A (2006) Social isolation selectively reduces hippocampal brain-derived neurotrophic factor without altering plasma corticosterone. Behav Brain Res 168(2):323–325

    Article  CAS  PubMed  Google Scholar 

  76. Hashimoto K, Shimizu E, Iyo M (2004) Critical role of brain-derived neurotrophic factor in mood disorders. Brain Res Brain Res Rev 45(2):104–114, Review

    Article  CAS  PubMed  Google Scholar 

  77. Buitelaar JK, van der Wees M, Swaab-Barneveld H, van der Gaag RJ (1999) Theory of mind and emotion-recognition functioning in autistic spectrum disorders and in psychiatric control and normal children. Dev Psychopathol 11(1):39–58

    Article  CAS  PubMed  Google Scholar 

  78. Geurts HM, Verté S, Oosterlaan J, Roeyers H, Hartman CA, Mulder EJ, Berckelaer-Onnes IA, Sergeant JA (2004) Can the children’s communication checklist differentiate between children with autism, children with ADHD, and normal controls? J Child Psychol Psychiatry 45(8):1437–1453

    Article  PubMed  Google Scholar 

  79. Sergeant JA, Geurts H, Oosterlaan J (2002) How specific is a deficit of executive functioning for attention-deficit/hyperactivity disorder? Behav Brain Res 130(1–2):3–28, Review

    Article  PubMed  Google Scholar 

  80. Dorris L, Espie CA, Knott F, Salt J (2004) Mind-reading difficulties in the siblings of people with Asperger’s syndrome: evidence for a genetic influence in the abnormal development of a specific cognitive domain. J Child Psychol Psychiatry 45(2):412–418

    Article  CAS  PubMed  Google Scholar 

  81. Castelli F, Frith C, Happé F, Frith U (2002) Autism, Asperger syndrome and brain mechanisms for the attribution of mental states to animated shapes. Brain 125(Pt 8):1839–1849

    Article  PubMed  Google Scholar 

  82. Sullivan PF, Fan C, Perou CM (2006) Evaluating the comparability of gene expression in blood and brain. Am J Med Genet B Neuropsychiatr Genet 141B(3):261–268

    Article  PubMed  Google Scholar 

  83. Rollins B, Martin MV, Morgan L, Vawter MP (2010) Analysis of whole genome biomarker expression in blood and brain. Am J Med Genet B Neuropsychiatr Genet 153B(4):919–936

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Hayashi-Takagi A, Vawter MP, Iwamoto K (2014) Peripheral biomarkers revisited: integrative profiling of peripheral samples for psychiatric research. Biol Psychiatry 75(12):920–928

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by an unrestricted research grant from María Francisca de Roviralta Fundation (Madrid, Spain). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. This work has been also funded by the FI-DRG2010 grant and the BE-DRG2010 grant sponsored by the Departament d’Educació i Universitats de la Generalitat de Catalunya and European Social Fund. We are grateful to all patients and controls for their participation in our study, to clinical collaborators for patient’s assessment and to Irene Bolea for critical comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Gella.

Additional information

Mònica Segura and Carla Pedreño contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Segura, M., Pedreño, C., Obiols, J. et al. Neurotrophin blood-based gene expression and social cognition analysis in patients with autism spectrum disorder. Neurogenetics 16, 123–131 (2015). https://doi.org/10.1007/s10048-014-0434-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-014-0434-9

Keywords

Navigation