Skip to main content
Log in

Autism spectrum disorder-associated genes and the development of dentate granule cells

  • Review
  • Published:
Medical Molecular Morphology Aims and scope Submit manuscript

Abstract

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by severe clinical symptoms such as the deficiency of the social communication, repetitive and stereotyped behaviors, and restricted interests. Although complex genetic and environmental factors are thought to contribute to the development of ASD, the precise etiologies are largely unknown. Neuroanatomical observations have been made of developmental abnormalities in different brain regions, including dentate gyrus of hippocampus, which is widely accepted as the center for learning and memory. However, little is known about what roles ASD-associated genes play in the development of hippocampal dentate granule cells. In this article, we summarized functions and pathophysiological significance of 6 representative ASD-associated genes, SEMA5A, PTEN, NLGN, EN-2, FMR1, and MECP2, by focusing on the development of dentate gyrus. We then introduced a recently developed gene transfer method directed to neonatal dentate granule cells. This new method will be useful for elucidating physiological as well as pathophysiological significance of ASD-associated genes in the development of hippocampal formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lord C, Rutter M, Goode S, Heemsbergen J, Jordan H, Mawhood L, Schopler E (1989) Autism diagnostic observation schedule: a standardized observation of communicative and social behavior. J Autism Dev Disord 19:185–212

    Article  CAS  PubMed  Google Scholar 

  2. Lord C, Rutter M, Le Couteur A (1994) Autism diagnostic interview-revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord 24:659–685

    Article  CAS  PubMed  Google Scholar 

  3. Tordjman S, Somogyi E, Coulon N, Kermarrec S, Cohen D, Bronsard G, Bonnot O, Weismann-Arcache C, Botbol M, Lauth B et al (2014) Gene x environment interactions in autism spectrum disorders: role of epigenetic mechanisms. Front Psychiatry 5:53

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bailey A, Le Couteur A, Gottesman I, Bolton P, Simonoff E, Yuzda E, Rutter M (1995) Autism as a strongly genetic disorder: evidence from a British twin study. Psychol Med 25:63–77

    Article  CAS  PubMed  Google Scholar 

  5. Steffenburg S, Gillberg C, Hellgren L, Andersson L, Gillberg IC, Jakobsson G, Bohman M (1989) A twin study of autism in Denmark, Finland, Iceland, Norway and Sweden. J Child Psychol Psychiatry 30:405–416

    Article  CAS  PubMed  Google Scholar 

  6. Li X, Zou H, Brown WT (2012) Genes associated with autism spectrum disorder. Brain Res Bull 88:543–552

    Article  CAS  PubMed  Google Scholar 

  7. Sahin M, Sur M (2015) Genes, circuits, and precision therapies for autism and related neurodevelopmental disorders. Science 350:aab3897

    Article  PubMed  Google Scholar 

  8. Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124:319–335

    Article  CAS  PubMed  Google Scholar 

  9. Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317

    Article  CAS  PubMed  Google Scholar 

  10. Altman J, Bayer SA (1990) Mosaic organization of the hippocampal neuroepithelium and the multiple germinal sources of dentate granule cells. J Comp Neurol 301:325–342

    Article  CAS  PubMed  Google Scholar 

  11. Altman J, Bayer SA (1990) Prolonged sojourn of developing pyramidal cells in the intermediate zone of the hippocampus and their settling in the stratum pyramidale. J Comp Neurol 301:343–364

    Article  CAS  PubMed  Google Scholar 

  12. Altman J, Bayer SA (1990) Migration and distribution of two populations of hippocampal granule cell precursors during the perinatal and postnatal periods. J Comp Neurol 301:365–381

    Article  CAS  PubMed  Google Scholar 

  13. Bayer SA (1980) Development of the hippocampal region in the rat I. Neurogenesis examined with 3H-thymidine autoradiography. J Comp Neurol 190:87–114

    Article  CAS  PubMed  Google Scholar 

  14. Apple DM, Fonseca RS, Kokovay E (2017) The role of adult neurogenesis in psychiatric and cognitive disorders. Brain Res 1655:270–276

    Article  CAS  PubMed  Google Scholar 

  15. Kropff E, Yang SM, Schinder AF (2015) Dynamic role of adult-born dentate granule cells in memory processing. Curr Opin Neurobiol 35:21–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wegiel J, Kuchna I, Nowicki K, Imaki H, Wegiel J, Marchi E, Ma SY, Chauhan A, Chauhan V, Bobrowicz TW et al (2010) The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathol 119:755–770

    Article  PubMed  PubMed Central  Google Scholar 

  17. Donovan AP, Basson MA (2017) The neuroanatomy of autism—a developmental perspective. J Anat 230:4–15

    Article  PubMed  Google Scholar 

  18. Aylward EH, Minshew NJ, Goldstein G, Honeycutt NA, Augustine AM, Yates KO, Barta PE, Pearlson GD (1999) MRI volumes of amygdala and hippocampus in non-mentally retarded autistic adolescents and adults. Neurology 53:2145–2150

    Article  CAS  PubMed  Google Scholar 

  19. Schumann CM, Hamstra J, Goodlin-Jones BL, Lotspeich LJ, Kwon H, Buonocore MH, Lammers CR, Reiss AL, Amaral DG (2004) The amygdala is enlarged in children but not adolescents with autism; the hippocampus is enlarged at all ages. J Neurosci 24:6392–6401

    Article  CAS  PubMed  Google Scholar 

  20. Bourgeron T (2015) From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nat Rev Neurosci 16:551–563

    Article  CAS  PubMed  Google Scholar 

  21. Cope EC, Briones BA, Brockett AT, Martinez S, Vigneron PA, Opendak M, Wang SS, Gould E (2016) Immature neurons and radial glia, but not astrocytes or microglia, are altered in adult Cntnap2 and Shank3 mice, models of autism. eNeuro 3:e0196-16

    Article  Google Scholar 

  22. Yazdani U, Terman J (2006) The semaphorins. Genome Biol 7:211

    Article  PubMed  PubMed Central  Google Scholar 

  23. Weiss LA, Arking DE, Daly MJ, Chakravarti A (2009) A genome-wide linkage and association scan reveals novel loci for autism. Nature 461:802–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mosca-Boidron AL, Gueneau L, Huguet G, Goldenberg A, Henry C, Gigot N, Pallesi-Pocachard E, Falace A, Duplomb L, Thevenon J et al (2016) A de novo microdeletion of SEMA5A in a boy with autism spectrum disorder and intellectual disability. Eur J Hum Genet 24:838–843

    Article  CAS  PubMed  Google Scholar 

  25. Duan Y, Wang SH, Song J, Mironova Y, Ming GL, Kolodkin AL, Giger RJ (2014) Semaphorin 5A inhibits synaptogenesis in early postnatal- and adult-born hippocampal dentate granule cells. eLife 3:e04390

    Article  PubMed Central  Google Scholar 

  26. Matsuoka Ryota L, Chivatakarn O, Badea Tudor C, Samuels Ivy S, Cahill H, K-i Katayama, Kumar SR, Suto F, Chédotal A, Peachey Neal S et al (2011) Class 5 transmembrane semaphorins control selective mammalian retinal lamination and function. Neuron 71:460–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Maehama T, Dixon JE (1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273:13375–13378

    Article  CAS  PubMed  Google Scholar 

  28. Butler MG, Dasouki MJ, Zhou X-P, Talebizadeh Z, Brown M, Takahashi TN, Miles JH, Wang CH, Stratton R, Pilarski R et al (2005) Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumour suppressor gene mutations. J Med Genet 42:318–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Buxbaum JD, Cai G, Chaste P, Nygren G, Goldsmith J, Reichert J, Anckarsater H, Rastam M, Smith CJ, Silverman JM et al (2007) Mutation screening of the PTEN gene in patients with autism spectrum disorders and macrocephaly. Am J Med Genet B Neuropsychiatr Genet 144B:484–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kwon C-H, Luikart BW, Powell CM, Zhou J, Matheny SA, Zhang W, Li Y, Baker SJ, Parada LF (2006) Pten regulates neuronal arborization and social interaction in mice. Neuron 50:377–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Luikart BW, Schnell E, Washburn EK, Bensen AL, Tovar KR, Westbrook GL (2011) Pten knockdown in vivo increases excitatory drive onto dentate granule cells. J Neurosci 31:4345–4354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Williams MR, DeSpenza T Jr, Li M, Gulledge AT, Luikart BW (2015) Hyperactivity of newborn Pten knock-out neurons results from increased excitatory synaptic drive. J Neurosci 35:943–959

    Article  PubMed  PubMed Central  Google Scholar 

  33. Haws ME, Jaramillo TC, Espinosa F, Widman AJ, Stuber GD, Sparta DR, Tye KM, Russo SJ, Parada LF, Stavarache M et al (2014) PTEN knockdown alters dendritic spine/protrusion morphology, not density. J Comp Neurol 522:1171–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chih B, Engelman H, Scheiffele P (2005) Control of excitatory and inhibitory synapse formation by neuroligins. Science 307:1324–1328

    Article  CAS  PubMed  Google Scholar 

  35. Sudhof TC (2008) Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455:903–911

    Article  PubMed  PubMed Central  Google Scholar 

  36. Graf ER, Zhang X, Jin S-X, Linhoff MW, Craig AM (2004) Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell 119:1013–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Levinson JN, Chéry N, Huang K, Wong TP, Gerrow K, Kang R, Prange O, Wang YT, El-Husseini A (2005) Neuroligins mediate excitatory and inhibitory synapse formation: involvement of PSD-95 and neurexin-1β in neuroligin-induced synaptic specificity. J Biol Chem 280:17312–17319

    Article  CAS  PubMed  Google Scholar 

  38. Jamain S, Quach H, Betancur C, Rastam M, Colineaux C, Gillberg IC, Soderstrom H, Giros B, Leboyer M, Gillberg C et al (2003) Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 34:27–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Laumonnier F, Bonnet-Brilhault F, Gomot M, Blanc R, David A, Moizard MP, Raynaud M, Ronce N, Lemonnier E, Calvas P et al (2004) X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family. Am J Hum Genet 74:552–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Parente DJ, Garriga C, Baskin B, Douglas G, Cho MT, Araujo GC, Shinawi M (2017) Neuroligin 2 nonsense variant associated with anxiety, autism, intellectual disability, hyperphagia, and obesity. Am J Med Genet A 173:213–216

    Article  CAS  PubMed  Google Scholar 

  41. Budreck EC, Scheiffele P (2007) Neuroligin-3 is a neuronal adhesion protein at GABAergic and glutamatergic synapses. Eur J Neurosci 26:1738–1748

    Article  PubMed  Google Scholar 

  42. Song JY, Ichtchenko K, Sudhof TC, Brose N (1999) Neuroligin 1 is a postsynaptic cell-adhesion molecule of excitatory synapses. Proc Natl Acad Sci USA 96:1100–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Varoqueaux F, Jamain S, Brose N (2004) Neuroligin 2 is exclusively localized to inhibitory synapses. Eur J Cell Biol 83:449–456

    Article  CAS  PubMed  Google Scholar 

  44. Shipman SL, Nicoll RA (2012) A subtype-specific function for the extracellular domain of neuroligin 1 in hippocampal LTP. Neuron 76:309–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McGrath SE, Michael A, Pandha H, Morgan R (2013) Engrailed homeobox transcription factors as potential markers and targets in cancer. FEBS Lett 587:549–554

    Article  CAS  PubMed  Google Scholar 

  46. Petit E, Herault J, Martineau J, Perrot A, Barthelemy C, Hameury L, Sauvage D, Lelord G, Muh JP (1995) Association study with two markers of a human homeogene in infantile autism. J Med Genet 32:269–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Benayed R, Gharani N, Rossman I, Mancuso V, Lazar G, Kamdar S, Bruse SE, Tischfield S, Smith BJ, Zimmerman RA et al (2005) Support for the homeobox transcription factor gene ENGRAILED 2 as an autism spectrum disorder susceptibility locus. Am J Hum Genet 77:851–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gharani N, Benayed R, Mancuso V, Brzustowicz LM, Millonig JH (2004) Association of the homeobox transcription factor, ENGRAILED 2, 3, with autism spectrum disorder. Mol Psychiatry 9:474–484

    Article  CAS  PubMed  Google Scholar 

  49. Wang L, Jia M, Yue W, Tang F, Qu M, Ruan Y, Lu T, Zhang H, Yan H, Liu J et al (2008) Association of the ENGRAILED 2 (EN2) gene with autism in Chinese Han population. Am J Med Genet B Neuropsychiatr Genet 147B:434–438

    Article  CAS  PubMed  Google Scholar 

  50. Yang P, Lung FW, Jong YJ, Hsieh HY, Liang CL, Juo SH (2008) Association of the homeobox transcription factor gene ENGRAILED 2 with autistic disorder in Chinese children. Neuropsychobiology 57:3–8

    Article  CAS  PubMed  Google Scholar 

  51. Genestine M, Lin L, Durens M, Yan Y, Jiang Y, Prem S, Bailoor K, Kelly B, Sonsalla PK, Matteson PG et al (2015) Engrailed-2 (En2) deletion produces multiple neurodevelopmental defects in monoamine systems, forebrain structures and neurogenesis and behavior. Hum Mol Genet 24:5805–5827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Martin JP, Bell J (1943) A pedigree of mental defect showing sex-linkage. J Neurol Psychiatry 6:154–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bagni C, Tassone F, Neri G, Hagerman R (2012) Fragile X syndrome: causes, diagnosis, mechanisms, and therapeutics. J Clin Invest 122:4314–4322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Antar LN, Dictenberg JB, Plociniak M, Afroz R, Bassell GJ (2005) Localization of FMRP-associated mRNA granules and requirement of microtubules for activity-dependent trafficking in hippocampal neurons. Genes Brain Behav 4:350–359

    Article  CAS  PubMed  Google Scholar 

  55. Hagerman R, Au J, Hagerman P (2011) FMR1 premutation and full mutation molecular mechanisms related to autism. J Neurodev Disord 3:211–224

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hernandez RN, Feinberg RL, Vaurio R, Passanante NM, Thompson RE, Kaufmann WE (2009) Autism spectrum disorder in fragile X syndrome: a longitudinal evaluation. Am J Med Genet A 149A:1125–1137

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kaufmann WE, Cortell R, Kau ASM, Bukelis I, Tierney E, Gray RM, Cox C, Capone GT, Stanard P (2004) Autism spectrum disorder in fragile X syndrome: communication, social interaction, and specific behaviors. Am J Med Genet A 129A:225–234

    Article  PubMed  Google Scholar 

  58. The Dutch-Belgian Fragile XC, Bakker CE, Verheij C, Willemsen R, van der Helm R, Oerlemans F, Vermey M, Bygrave A, Hoogeveen A, Oostra BA et al (1994) Fmr1 knockout mice: a model to study fragile X mental retardation. Cell 78:23–33

    Google Scholar 

  59. Bhattacharya A, Kaphzan H, Alvarez-Dieppa AC, Murphy JP, Pierre P, Klann E (2012) Genetic removal of p70 S6 kinase 1 corrects molecular, synaptic, and behavioral phenotypes in fragile X syndrome mice. Neuron 76:325–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bilousova TV, Dansie L, Ngo M, Aye J, Charles JR, Ethell DW, Ethell IM (2009) Minocycline promotes dendritic spine maturation and improves behavioural performance in the fragile X mouse model. J Med Genet 46:94–102

    Article  CAS  PubMed  Google Scholar 

  61. Grossman AW, Aldridge GM, Weiler IJ, Greenough WT (2006) Local protein synthesis and spine morphogenesis: fragile X syndrome and beyond. J Neurosci 26:7151–7155

    Article  CAS  PubMed  Google Scholar 

  62. Levenga J, de Vrij FM, Buijsen RA, Li T, Nieuwenhuizen IM, Pop A, Oostra BA, Willemsen R (2011) Subregion-specific dendritic spine abnormalities in the hippocampus of Fmr1 KO mice. Neurobiol Learn Mem 95:467–472

    Article  CAS  PubMed  Google Scholar 

  63. Grossman AW, Aldridge GM, Lee KJ, Zeman MK, Jun CS, Azam HS, Arii T, Imoto K, Greenough WT, Rhyu IJ (2010) Developmental characteristics of dendritic spines in the dentate gyrus of Fmr1 knockout mice. Brain Res 1355:221–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lewis JD, Meehan RR, Henzel WJ, Maurer-Fogy I, Jeppesen P, Klein F, Bird A (1992) Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 69:905–914

    Article  CAS  PubMed  Google Scholar 

  65. Chahrour M, Jung SY, Shaw C, Zhou X, Wong ST, Qin J, Zoghbi HY (2008) MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320:1224–1229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23:185–188

    Article  CAS  PubMed  Google Scholar 

  67. Wan M, Lee SS, Zhang X, Houwink-Manville I, Song HR, Amir RE, Budden S, Naidu S, Pereira JL, Lo IF et al (1999) Rett syndrome and beyond: recurrent spontaneous and familial MECP2 mutations at CpG hotspots. Am J Hum Genet 65:1520–1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rett A (1966) On a unusual brain atrophy syndrome in hyperammonemia in childhood. Wien Med Wochenschr 116:723–726

    CAS  PubMed  Google Scholar 

  69. Ramocki MB, Tavyev YJ, Peters SU (2010) The MECP2 duplication syndrome. Am J Med Genet A 152A:1079–1088

    Article  PubMed  PubMed Central  Google Scholar 

  70. Smrt RD, Eaves-Egenes J, Barkho BZ, Santistevan NJ, Zhao C, Aimone JB, Gage FH, Zhao X (2007) Mecp2 deficiency leads to delayed maturation and altered gene expression in hippocampal neurons. Neurobiol Dis 27:77–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Schaevitz LR, Nicolai R, Lopez CM, D’Iddio S, Iannoni E, Berger-Sweeney JE (2012) Acetyl-L-carnitine improves behavior and dendritic morphology in a mouse model of Rett syndrome. PLoS One 7:e51586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fukuchi-Shimogori T, Grove EA (2001) Neocortex patterning by the secreted signaling molecule FGF8. Science 294:1071–1074

    Article  CAS  PubMed  Google Scholar 

  73. Saito T, Nakatsuji N (2001) Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev Biol 240:237–246

    Article  CAS  PubMed  Google Scholar 

  74. Tabata H, Nakajima K (2001) Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex. Neuroscience 103:865–872

    Article  CAS  PubMed  Google Scholar 

  75. Nakahira E, Yuasa S (2005) Neuronal generation, migration, and differentiation in the mouse hippocampal primoridium as revealed by enhanced green fluorescent protein gene transfer by means of in utero electroporation. J Comp Neurol 483:329–340

    Article  PubMed  Google Scholar 

  76. Goto M, Mizuno M, Matsumoto A, Yang Z, Jimbo EF, Tabata H, Yamagata T, Nagata KI (2017) Role of a circadian-relevant gene NR1D1 in brain development: possible involvement in the pathophysiology of autism spectrum disorders. Sci Rep 7:43945

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hamada N, Ito H, Iwamoto I, Morishita R, Tabata H, Nagata K (2015) Role of the cytoplasmic isoform of RBFOX1/A2BP1 in establishing the architecture of the developing cerebral cortex. Mol Autism 6:56

    Article  PubMed  PubMed Central  Google Scholar 

  78. Hamada N, Ito H, Nishijo T, Iwamoto I, Morishita R, Tabata H, Momiyama T, Nagata K (2016) Essential role of the nuclear isoform of RBFOX1, a candidate gene for autism spectrum disorders, in the brain development. Sci Rep 6:30805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mizuno M, Matsumoto A, Hamada N, Ito H, Miyauchi A, Jimbo EF, Momoi MY, Tabata H, Yamagata T, Nagata K (2015) Role of an adaptor protein Lin-7B in brain development: possible involvement in autism spectrum disorders. J Neurochem 132:61–69

    Article  CAS  PubMed  Google Scholar 

  80. Boutin C, Diestel S, Desoeuvre A, Tiveron MC, Cremer H (2008) Efficient in vivo electroporation of the postnatal rodent forebrain. PLoS One 3:e1883

    Article  PubMed  PubMed Central  Google Scholar 

  81. Chesler AT, Le Pichon CE, Brann JH, Araneda RC, Zou DJ, Firestein S (2008) Selective gene expression by postnatal electroporation during olfactory interneuron neurogenesis. PLoS One 3:e1517

    Article  PubMed  PubMed Central  Google Scholar 

  82. Fernandez ME, Croce S, Boutin C, Cremer H, Raineteau O (2011) Targeted electroporation of defined lateral ventricular walls: a novel and rapid method to study fate specification during postnatal forebrain neurogenesis. Neural Dev 6:13

    Article  PubMed  PubMed Central  Google Scholar 

  83. Ito H, Morishita R, Iwamoto I, Nagata K (2014) Establishment of an in vivo electroporation method into postnatal newborn neurons in the dentate gyrus. Hippocampus 24:1449–1457

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by JSPS KAKENHI Grant Numbers 16J06511, 23590124, 16K07211, JP25462658, and JP16K08264 and a Grant-in-aid of Takeda Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koh-ichi Nagata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ito, H., Morishita, R. & Nagata, Ki. Autism spectrum disorder-associated genes and the development of dentate granule cells. Med Mol Morphol 50, 123–129 (2017). https://doi.org/10.1007/s00795-017-0161-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00795-017-0161-z

Keywords

Navigation