Skip to main content

Advertisement

Log in

Response time intra-subject variability: commonalities between children with autism spectrum disorders and children with ADHD

  • Original Contribution
  • Published:
European Child & Adolescent Psychiatry Aims and scope Submit manuscript

Abstract

Despite the common co-occurrence of symptoms of attention deficit hyperactivity disorder (ADHD) in individuals with autism spectrum disorders (ASD), the underlying mechanisms are under-explored. A potential candidate for investigation is response time intra-subject variability (RT-ISV), a hypothesized marker of attentional lapses. Direct comparisons of RT-ISV in ASD versus ADHD are limited and contradictory. We aimed to examine whether distinct fluctuations in RT-ISV characterize children with ASD and with ADHD relative to typically developing children (TDC). We applied both a priori-based and data-driven strategies to RT performance of 46 children with ASD, 46 with ADHD, and 36 TDC (aged 7–11.9 years). Specifically, we contrasted groups relative to the amplitude of four preselected frequency bands as well as to 400 frequency bins from 0.006 to 0.345 Hz. In secondary analyses, we divided the ASD group into children with and without substantial ADHD symptoms (ASD+ and ASD, respectively). Regardless of the strategy employed, RT-ISV fluctuations at frequencies between 0.20 and 0.345 Hz distinguished children with ADHD, but not children with ASD, from TDC. Children with ASD+ and those with ADHD shared elevated amplitudes of RT-ISV fluctuations in frequencies between 0.18 and 0.345 Hz relative to TDC. In contrast, the ASD subgroup did not differ from TDC in RT-ISV frequency fluctuations. RT-ISV fluctuations in frequencies 0.18–0.345 Hz (i.e., periods between 3 and 5 s) are associated with ADHD symptoms regardless of categorical diagnosis and may represent a biomarker. These results suggest that children with ADHD and those with ASD+ share common underlying pathophysiological mechanisms of RT-ISV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ames CS, White SJ (2011) Are ADHD traits dissociable from the autistic profile? Links between cognition and behaviour. J Autism Dev Disord 41(3):357–363

    Article  PubMed  Google Scholar 

  2. Goldstein S, Schwebach AJ (2004) The comorbidity of pervasive developmental disorder and attention deficit hyperactivity disorder: results of a retrospective chart review. J Autism Dev Disord 34(3):329–339

    Article  PubMed  Google Scholar 

  3. Holtmann M, Bolte S, Poustka F (2007) Attention deficit hyperactivity disorder symptoms in pervasive developmental disorders: association with autistic behavior domains and coexisting psychopathology. Psychopathology 40(3):172–177

    Article  PubMed  Google Scholar 

  4. Mukaddes NM, Herguner S, Tanidir C (2010) Psychiatric disorders in individuals with high-functioning autism and Asperger’s disorder: similarities and differences. World J Biol Psychiatry 11(8):964–971

    Article  PubMed  Google Scholar 

  5. Ponde MP, Novaes CM, Losapio MF (2010) Frequency of symptoms of attention deficit and hyperactivity disorder in autistic children. Arq Neuropsiquiatr 68(1):103–106

    Article  PubMed  Google Scholar 

  6. Simonoff E, Pickles A, Charman T, Chandler S, Loucas T, Baird G (2008) Psychiatric disorders in children with autism spectrum disorders: prevalence, comorbidity, and associated factors in a population-derived sample. J Am Acad Child Adolesc Psychiatry 47(8):921–929

    Article  PubMed  Google Scholar 

  7. Sinzig J, Walter D, Doepfner M (2009) Attention deficit/hyperactivity disorder in children and adolescents with autism spectrum disorder: symptom or syndrome? J Atten Disord 13(2):117–126

    Article  PubMed  Google Scholar 

  8. Castellanos FX, Sonuga-Barke EJ, Milham MP, Tannock R (2006) Characterizing cognition in ADHD: beyond executive dysfunction. Trends Cogn Sci 10(3):117–123

    Article  PubMed  Google Scholar 

  9. Castellanos FX, Sonuga-Barke EJ, Scheres A, Di Martino A, Hyde C, Walters JR (2005) Varieties of attention-deficit/hyperactivity disorder-related intra-individual variability. Biol Psychiatry 57(11):1416–1423

    Article  PubMed Central  PubMed  Google Scholar 

  10. Sonuga-Barke EJ, Castellanos FX (2007) Spontaneous attentional fluctuations in impaired states and pathological conditions: a neurobiological hypothesis. Neurosci Biobehav Rev 31(7):977–986

    Article  PubMed  Google Scholar 

  11. Weissman DH, Roberts KC, Visscher KM, Woldorff MG (2006) The neural bases of momentary lapses in attention. Nat Neurosci 9(7):971–978

    Article  CAS  PubMed  Google Scholar 

  12. Castellanos FX, Tannock R (2002) Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes. Nat Rev Neurosci 3(8):617–628

    CAS  PubMed  Google Scholar 

  13. Tamm L, Narad ME, Antonini TN, O’Brien KM, Hawk LW Jr, Epstein JN (2012) Reaction time variability in ADHD: a review. Neurotherapeutics 9(3):500–508

    Article  PubMed  Google Scholar 

  14. Di Martino A, Ghaffari M, Curchack J, Reiss P, Hyde C, Vannucci M, Petkova E, Klein DF, Castellanos FX (2008) Decomposing intra-subject variability in children with attention-deficit/hyperactivity disorder. Biol Psychiatry 64(7):607–614

    Article  PubMed Central  PubMed  Google Scholar 

  15. Karalunas SL, Huang-Pollock CL, Nigg JT (2013) Is reaction time variability in ADHD mainly at low frequencies? J Child Psychol Psychiatry 54(5):536–544

    Article  PubMed  Google Scholar 

  16. Adamo N, Di Martino A, Esu L, Petkova E, Johnson K, Kelly S, Castellanos FX, Zuddas A (2012) Increased response-time variability across different cognitive tasks in children with ADHD. J Atten Disord

  17. Helps SK, Broyd SJ, Bitsakou P, Sonuga-Barke EJ (2011) Identifying a distinctive familial frequency band in reaction time fluctuations in ADHD. Neuropsychology 25(6):711–719

    Article  PubMed  Google Scholar 

  18. Johnson KA, Barry E, Bellgrove MA, Cox M, Kelly SP, Daibhis A, Daly M, Keavey M, Watchorn A, Fitzgerald M, McNicholas F, Kirley A, Robertson IH, Gill M (2008) Dissociation in response to methylphenidate on response variability in a group of medication naive children with ADHD. Neuropsychologia 46(5):1532–1541

    Article  PubMed  Google Scholar 

  19. Johnson KA, Kelly SP, Bellgrove MA, Barry E, Cox M, Gill M, Robertson IH (2007) Response variability in attention deficit hyperactivity disorder: evidence for neuropsychological heterogeneity. Neuropsychologia 45(4):630–638

    Article  PubMed  Google Scholar 

  20. Johnson KA, Kelly SP, Robertson IH, Barry E, Mulligan A, Daly M, Lambert D, McDonnell C, Connor TJ, Hawi Z, Gill M, Bellgrove MA (2008) Absence of the 7-repeat variant of the DRD4 VNTR is associated with drifting sustained attention in children with ADHD but not in controls. Am J Med Genet B Neuropsychiatr Genet 147B(6):927–937

    Article  PubMed  Google Scholar 

  21. Mairena MA, Di Martino A, Dominguez-Martin C, Gomez-Guerrero L, Gioia G, Petkova E, Castellanos FX (2012) Low frequency oscillations of response time explain parent ratings of inattention and hyperactivity/impulsivity. Eur Child Adolesc Psychiatry 21(2):101–109

    Article  PubMed  Google Scholar 

  22. Vaurio RG, Simmonds DJ, Mostofsky SH (2009) Increased intra-individual reaction time variability in attention-deficit/hyperactivity disorder across response inhibition tasks with different cognitive demands. Neuropsychologia 47(12):2389–2396

    Article  PubMed  Google Scholar 

  23. Bellgrove MA, Hawi Z, Kirley A, Gill M, Robertson IH (2005) Dissecting the attention deficit hyperactivity disorder (ADHD) phenotype: sustained attention, response variability and spatial attentional asymmetries in relation to dopamine transporter (DAT1) genotype. Neuropsychologia 43(13):1847–1857

    Article  PubMed  Google Scholar 

  24. Borella E, de Ribaupierre A, Cornoldi C, Chicherio C (2012) Beyond interference control impairment in ADHD: evidence from increased intraindividual variability in the color-stroop test. Child Neuropsychol

  25. Epstein JN, Langberg JM, Rosen PJ, Graham A, Narad ME, Antonini TN, Brinkman WB, Froehlich T, Simon JO, Altaye M (2011) Evidence for higher reaction time variability for children with ADHD on a range of cognitive tasks including reward and event rate manipulations. Neuropsychology 25(4):427–441

    Article  PubMed Central  PubMed  Google Scholar 

  26. Halperin JM, Trampush JW, Miller CJ, Marks DJ, Newcorn JH (2008) Neuropsychological outcome in adolescents/young adults with childhood ADHD: profiles of persisters, remitters and controls. J Child Psychol Psychiatry 49(9):958–966

    Article  PubMed Central  PubMed  Google Scholar 

  27. Hervey AS, Epstein JN, Curry JF, Tonev S, Eugene Arnold L, Keith Conners C, Hinshaw SP, Swanson JM, Hechtman L (2006) Reaction time distribution analysis of neuropsychological performance in an ADHD sample. Child Neuropsychol 12(2):125–140

    Article  PubMed  Google Scholar 

  28. Kuntsi J, Oosterlaan J, Stevenson J (2001) Psychological mechanisms in hyperactivity: I. response inhibition deficit, working memory impairment, delay aversion, or something else? J Child Psychol Psychiatry 42(2):199–210

    Article  CAS  PubMed  Google Scholar 

  29. Klein C, Wendling K, Huettner P, Ruder H, Peper M (2006) Intra-subject variability in attention-deficit hyperactivity disorder. Biol Psychiatry 60(10):1088–1097

    Article  PubMed  Google Scholar 

  30. Leth-Steensen C, Elbaz ZK, Douglas VI (2000) Mean response times, variability, and skew in the responding of ADHD children: a response time distributional approach. Acta Psychol (Amst) 104(2):167–190

    Article  CAS  Google Scholar 

  31. Rubia K, Taylor E, Smith AB, Oksanen H, Overmeyer S, Newman S (2001) Neuropsychological analyses of impulsiveness in childhood hyperactivity. Br J Psychiatry 179:138–143

    Article  CAS  PubMed  Google Scholar 

  32. Scheres A, Oosterlaan J, Sergeant JA (2001) Response execution and inhibition in children with AD/HD and other disruptive disorders: the role of behavioral activation. J Child Psychol Psychiatry 42(3):347–357

    Article  CAS  PubMed  Google Scholar 

  33. Gomez-Guerrero L, Martin CD, Mairena MA, Di Martino A, Wang J, Mendelsohn AL, Dreyer BP, Isquith PK, Gioia G, Petkova E, Castellanos FX (2011) Response-time variability is related to parent ratings of inattention, hyperactivity, and executive function. J Atten Disord 15(7):572–582

    Article  PubMed  Google Scholar 

  34. Gooch D, Snowling MJ, Hulme C (2012) Reaction time variability in children with ADHD symptoms and/or dyslexia. Developmental Neuropsychol 37(5):453–472

    Article  Google Scholar 

  35. Christ SE, Holt DD, White DA, Green L (2007) Inhibitory control in children with autism spectrum disorder. J Autism Dev Disord 37(6):1155–1165

    Article  PubMed  Google Scholar 

  36. Geurts HM, Begeer S, Stockmann L (2009) Brief report: inhibitory control of socially relevant stimuli in children with high functioning autism. J Autism Dev Disord 39(11):1603–1607

    Article  PubMed Central  PubMed  Google Scholar 

  37. Raymaekers R, van der Meere J, Roeyers H (2004) Event-rate manipulation and its effect on arousal modulation and response inhibition in adults with high functioning autism. J Clin Exp Neuropsychol 26(1):74–82

    Article  PubMed  Google Scholar 

  38. Geurts HM, Verte S, Oosterlaan J, Roeyers H, Sergeant JA (2004) How specific are executive functioning deficits in attention deficit hyperactivity disorder and autism? J Child Psychol Psychiatry 45(4):836–854

    Article  PubMed  Google Scholar 

  39. Raymaekers R, Antrop I, van der Meere JJ, Wiersema JR, Roeyers H (2007) HFA and ADHD: a direct comparison on state regulation and response inhibition. J Clin Exp Neuropsychol 29(4):418–427

    Article  CAS  PubMed  Google Scholar 

  40. van der Meer JM, Oerlemans AM, van Steijn DJ, Lappenschaar MG, de Sonneville LM, Buitelaar JK, Rommelse NN (2012) Are autism spectrum disorder and attention-deficit/hyperactivity disorder different manifestations of one overarching disorder? Cognitive and symptom evidence from a clinical and population-based sample. J Am Acad Child Adolesc Psychiatry 51(11):1160–1172

    Article  PubMed  Google Scholar 

  41. Johnson KA, Robertson IH, Kelly SP, Silk TJ, Barry E, Daibhis A, Watchorn A, Keavey M, Fitzgerald M, Gallagher L, Gill M, Bellgrove MA (2007) Dissociation in performance of children with ADHD and high-functioning autism on a task of sustained attention. Neuropsychologia 45(10):2234–2245

    Article  PubMed Central  PubMed  Google Scholar 

  42. Geurts HM, Grasman RP, Verte S, Oosterlaan J, Roeyers H, van Kammen SM, Sergeant JA (2008) Intra-individual variability in ADHD, autism spectrum disorders and Tourette’s syndrome. Neuropsychologia 46(13):3030–3041

    Article  PubMed  Google Scholar 

  43. Raichle ME, Snyder AZ (2007) A default mode of brain function: a brief history of an evolving idea. Neuroimage 37(4):1083–1090

    Article  PubMed  Google Scholar 

  44. Kelly AM, Uddin LQ, Biswal BB, Castellanos FX, Milham MP (2008) Competition between functional brain networks mediates behavioral variability. Neuroimage 39(1):527–537

    Article  PubMed  Google Scholar 

  45. Castellanos FX, Kelly C, Milham MP (2009) The restless brain: attention-deficit hyperactivity disorder, resting-state functional connectivity, and intrasubject variability. Canadian J Psychiatry Revue Canadienne de Psychiatrie 54(10):665–672

    Google Scholar 

  46. Vissers ME, Cohen MX, Geurts HM (2012) Brain connectivity and high functioning autism: a promising path of research that needs refined models, methodological convergence, and stronger behavioral links. Neurosci Biobehav Rev 36(1):604–625

    Article  PubMed  Google Scholar 

  47. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541

    Article  CAS  PubMed  Google Scholar 

  48. Zuo XN, Di Martino A, Kelly C, Shehzad ZE, Gee DG, Klein DF, Castellanos FX, Biswal BB, Milham MP (2010) The oscillating brain: complex and reliable. Neuroimage 49(2):1432–1445

    Article  PubMed Central  PubMed  Google Scholar 

  49. Robertson IH, Manly T, Andrade J, Baddeley BT, Yiend J (1997) ‘Oops!’: performance correlates of everyday attentional failures in traumatic brain injured and normal subjects. Neuropsychologia 35(6):747–758

    Article  CAS  PubMed  Google Scholar 

  50. Buzsáki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304(5679):1926–1929

    Article  PubMed  Google Scholar 

  51. Penttonen M, Buzsáki G (2003) Natural logarithmic relationship between brain oscillators. Thalamus Relat Syst 2(02):145–152

    Article  Google Scholar 

  52. Ramsay JO, Silverman BW (2005) Functional data analysis, 2nd edn. Springer, New York

    Google Scholar 

  53. Kaufman J, Birmaher B, Brent D, Rao U, Flynn C, Moreci P, Williamson D, Ryan N (1997) Schedule for affective disorders and schizophrenia for school-age children-present and lifetime version (K-SADS-PL): initial reliability and validity data. J Am Acad Child Adolesc Psychiatry 36(7):980–988

    Article  CAS  PubMed  Google Scholar 

  54. Constantino JN, Davis SA, Todd RD, Schindler MK, Gross MM, Brophy SL, Metzger LM, Shoushtari CS, Splinter R, Reich W (2003) Validation of a brief quantitative measure of autistic traits: comparison of the social responsiveness scale with the autism diagnostic interview-revised. J Autism Dev Disord 33(4):427–433

    Article  PubMed  Google Scholar 

  55. Constantino JN, Gruber CP (eds) (2005) Social responsiveness scale (SRS): manual. Western Psychological Services, Los Angeles, CA

    Google Scholar 

  56. Conners CK (ed) (1997) Conners’ rating scales-revised user’s manual. Multi-Health Systems, Inc., North Tonawanda, NY

    Google Scholar 

  57. Conners CK (1998) Rating scales in attention-deficit/hyperactivity disorder: use in assessment and treatment monitoring. J Clin Psychiatry 59(suppl 7):24–30

    PubMed  Google Scholar 

  58. Hollingshead AB (1975) Four factor index of social status. Department of Sociology, Yale University, New Haven, CT

  59. Williams BR, Hultsch DF, Strauss EH, Hunter MA, Tannock R (2005) Inconsistency in reaction time across the life span. Neuropsychology 19(1):88–96

    Article  PubMed  Google Scholar 

  60. Reiss PT, Huang L, Mennes M (2010) Fast function-on-scalar regression with penalized basis expansions. Int J Biostat 6 (1):Article 28

    Google Scholar 

  61. Cohen J (1992) A power primer. Psychol bull 112(1):155–159

    Article  CAS  PubMed  Google Scholar 

  62. Ferguson CJ (2009) An effect size primer: a guide for clinicians and researchers. Prof Psychol Res Pract 40(5):532–538

    Article  Google Scholar 

  63. Gargaro BA, Rinehart NJ, Bradshaw JL, Tonge BJ, Sheppard DM (2011) Autism and ADHD: how far have we come in the comorbidity debate? Neurosci Biobehav Rev 35(5):1081–1088

    Article  PubMed  Google Scholar 

  64. Murray MJ (2010) Attention-deficit/hyperactivity disorder in the context of autism spectrum disorders. Curr Psychiatry Rep 12(5):382–388

    Article  PubMed  Google Scholar 

  65. Rommelse NN, Geurts HM, Franke B, Buitelaar JK, Hartman CA (2011) A review on cognitive and brain endophenotypes that may be common in autism spectrum disorder and attention-deficit/hyperactivity disorder and facilitate the search for pleiotropic genes. Neurosci Biobehav Rev 35(6):1363–1396

    Article  CAS  PubMed  Google Scholar 

  66. Fornito A, Zalesky A, Bassett DS, Meunier D, Ellison-Wright I, Yucel M, Wood SJ, Shaw K, O’Connor J, Nertney D, Mowry BJ, Pantelis C, Bullmore ET (2011) Genetic influences on cost-efficient organization of human cortical functional networks. J Neurosci 31(9):3261–3270

    Article  CAS  PubMed  Google Scholar 

  67. Cole DM, Smith SM, Beckmann CF (2010) Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Front Syst Neurosci 4:8

    PubMed Central  PubMed  Google Scholar 

  68. Niazy RK, Xie J, Miller K, Beckmann CF, Smith SM (2011) Spectral characteristics of resting state networks. Prog Brain Res 193:259–276

    Article  PubMed  Google Scholar 

  69. Yordanova J, Albrecht B, Uebel H, Kirov R, Banaschewski T, Rothenberger A, Kolev V (2011) Independent oscillatory patterns determine performance fluctuations in children with attention deficit/hyperactivity disorder. Brain 134(Pt 6):1740–1750

    Article  PubMed  Google Scholar 

  70. Smalley SL, Kustanovich V, Minassian SL, Stone JL, Ogdie MN, McGough JJ, McCracken JT, MacPhie IL, Francks C, Fisher SE, Cantor RM, Monaco AP, Nelson SF (2002) Genetic linkage of attention-deficit/hyperactivity disorder on chromosome 16p13, in a region implicated in autism. Am J Hum Genet 71(4):959–963

    Article  PubMed Central  PubMed  Google Scholar 

  71. Sinzig J, Lehmkuhl G (2007) What do we know about the serotonergic genetic heterogeneity in attention-deficit/hyperactivity and autistic disorders? Psychopathology 40(5):329–337

    Article  CAS  PubMed  Google Scholar 

  72. Ronald A, Simonoff E, Kuntsi J, Asherson P, Plomin R (2008) Evidence for overlapping genetic influences on autistic and ADHD behaviours in a community twin sample. J Child Psychol Psychiatry 49(5):535–542

    Article  PubMed  Google Scholar 

  73. Rommelse NN, Franke B, Geurts HM, Hartman CA, Buitelaar JK (2010) Shared heritability of attention-deficit/hyperactivity disorder and autism spectrum disorder. Eur Child Adolesc Psychiatry 19(3):281–295

    Article  PubMed Central  PubMed  Google Scholar 

  74. Taurines R, Schwenck C, Westerwald E, Sachse M, Siniatchkin M, Freitag C (2012) ADHD and autism: differential diagnosis or overlapping traits? A selective review. Atten Defic Hyperact Disord 4(3):115–139

    Article  PubMed  Google Scholar 

  75. Christakou A, Murphy CM, Chantiluke K, Cubillo AI, Smith AB, Giampietro V, Daly E, Ecker C, Robertson D, consortium MA, Murphy DG, Rubia K (2013) Disorder-specific functional abnormalities during sustained attention in youth with attention deficit hyperactivity disorder (ADHD) and with autism. Mol Psychiatry 18(2):236–244

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Di Martino A, Zuo XN, Kelly C, Grzadzinski R, Mennes M, Schvarcz A, Rodman J, Lord C, Castellanos FX, Milham MP (2013) Shared and distinct intrinsic functional network centrality in autism and attention-deficit/hyperactivity disorder. Biol Psychiatry. doi:10.1016/j.biopsych.2013.02.011

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank all children and parents for their participation to this research, as well as the research staff of the Phyllis Green and Randolph Cowen Institute for Pediatric Neuroscience for help in participant recruitment, assessment, data collection and data entry. The authors also wish to thank Drs. Katherine Johnson for sharing the fixed version of SART, Clare Kelly for help in some aspects of RT data preparation, and Philip Reiss for the development of the Functional Data Analysis applied here and for helpful discussion during manuscript preparation. This work was supported in part by grants from the National Institute of Mental Health (K23MH087770 to A.D.M., R01MH081218 to F.X.C.) from the National Institute of Child Health and Human Development (R01HD065282), Autism Speaks, the Stavros Niarchos Foundation, awarded to F.X.C., the Brain and Behavior Research Foundation (previously known as NARSAD) and the Leon Levy Foundation awarded to A.D.M.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Di Martino.

Electronic supplementary material

Below is the link to the electronic supplementary material.

787_2013_428_MOESM1_ESM.pdf

Supplementary Fig. 1 Average amplitude of each frequency band examined for the first (left) and the second (right) halves of the SART for TDC, ADHD and ASD groups, respectively. The X-axis represents the frequency spectrum examined for the task (0.006–0.345 Hz) with the a priori selected frequency bands delimited by dashed lines. The amplitude of each frequency is plotted on the Y-axis. To examine the effect of time on task, we computed the average amplitude of the examined frequencies separately for the first and second halves of the datasets within each group. Repeated measures ANOVA revealed no significant differences across all low-frequency bands (Slow-2 F (2,125) = 0.4, p = 0.70; Slow-3 F (2,125) = 0.4, p = 0.65; Slow-4 F (2,125) = 2.5, p = 0.09; Slow-5 F (2,125) = 0.6, p = 0.58). Similarly, analyses with SD-RT did not reveal any significant group differences (F (2,125) = 0.8, p = 0.43) (PDF 90 kb)

Supplementary material 2 (DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adamo, N., Huo, L., Adelsberg, S. et al. Response time intra-subject variability: commonalities between children with autism spectrum disorders and children with ADHD. Eur Child Adolesc Psychiatry 23, 69–79 (2014). https://doi.org/10.1007/s00787-013-0428-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00787-013-0428-4

Keywords

Navigation