Skip to main content

Advertisement

Log in

Combination of bone marrow stromal cell transplantation with mobilization by granulocyte-colony stimulating factor promotes functional recovery after spinal cord transection

  • Experimental Research
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Purpose

Spinal cord injury (SCI) results in severe neurological deficit. However, the functional recovery following SCI is very poor due to the neural lost and limited axonal regeneration. To date, there was no effective treatment. Recent studies have shown that bone marrow stromal cells (BMSCs) transplantated into the central nervous system (CNS) can survive and differentiate into neuronal-like cells. Additionally, granulocyte colony-stimulating factor (G-CSF) can mobilize hematopoietic stem cells and inhibit neural cell apoptosis. Thus, we aimed to evaluate the combined effect of BMSC transplantation and G-CSF administration on rats with traverse spinal cord injury.

Methods

BMSCs were cultured in vitro, labeled with Hoechst33342, and then transplanted into the lesion site with or without G-CSF administration (50 μg/kg/day) for 5 subsequent days. The groups included an untreated control, along with treatment by G-CSF alone, BMSCs alone, and G-CSF + BMSCs.

Results

In this study, by the end of eighth week after SCI injury, the animals in group treated with G-CSF + BMSCs showed higher BBB scores than the other two groups. Morphometric assessment showed that the lesion areas in the rats of the G-CSF + BMSCs group were much smaller. Compared with the control, BMSC, and G-CSF groups, less expression of apoptosis cells and more neural-cell markers around the spinal cord injury were found in rats treated with G-CSF + BMSCs.

Conclusions

The animals with the combination treatment achieved a better functional and morphologic recovery, although partial. This synergistic effect between BMSCs and G-CSF may be attributed to extrinsic and endogenous neurogenesis in the traverse spinal cord injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1a–d
Fig. 2
Fig. 3a–d
Fig. 4
Fig. 5a–e
Fig. 6a–e

Similar content being viewed by others

References

  1. Akiyama Y, Radtke C, Honmou O, Kocsis JD (2002) Remyelination of the spinal cord following intravenous delivery of bone marrow cells. Glia 39:229–236. doi:10.1002/glia.10102

    Article  PubMed  Google Scholar 

  2. Ankeny DP, McTigue DM, Jakeman LB (2004) Bone marrow transplants provide tissue protection and directional guidance for axons after contusive spinal cord injury in rats. Exp Neurol 190:17–31. doi:10.1016/j.expneurol.2004.05.045

    Article  PubMed  Google Scholar 

  3. Baddoo M, Hill K, Wilkinson R, Gaupp D, Hughes C, Kopen GC, Phinney DG (2003) Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. J Cell Biochem 89:1235–1249. doi:10.1002/jcb.10594

    Article  CAS  PubMed  Google Scholar 

  4. Basso DM, Beattie MS, Bresnahan JC (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12:1–21. doi:10.1089/neu.1995.12.1

    Article  CAS  PubMed  Google Scholar 

  5. Bianco P, Riminucci M, Gronthos S, Robey PG (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19:180–192. doi:10.1634/stemcells.19-3-180

    Article  CAS  PubMed  Google Scholar 

  6. Cao Q, Benton RL, Whittemore SR (2002) Stem cell repair of central nervous system injury. J Neurosci Res 68:501–510. doi:10.1002/jnr.10240

    Article  CAS  PubMed  Google Scholar 

  7. Chopp M, Zhang XH, Li Y, Wang L, Chen J, Lu D, Lu M, Rosenblum M (2000) Spinal cord injury in rat: treatment with bone marrow stromal cell transplantation. Neuroreport 11:3001–3005. doi:10.1097/00001756-200009110-00035

    Article  CAS  PubMed  Google Scholar 

  8. Demetri GD, Griffin JD (1991) Granulocyte colony-stimulating factor and its receptor. Blood 78:2791–2808

    CAS  PubMed  Google Scholar 

  9. Divani AA, Hussain MS, Magal E, Heary RF, Qureshi AI (2007) The use of stem cells’ hematopoietic stimulating factors therapy following spinal cord injury. Ann Biomed Eng 35:1647–1656. doi:10.1007/s10439-007-9359-x

    Article  PubMed  Google Scholar 

  10. Enomoto M, Wakabayashi Y, Qi ML, Shinomiya K (2004) Present situation and future aspects of spinal cord regeneration. J Orthop Sci 9:108–112. doi:10.1007/s00776-003-0740-9

    Article  PubMed  Google Scholar 

  11. Ha Y, Kim YS, Cho JM, Yoon SH, Park SR, Yoon DH, Kim EY, Park HC (2005) Role of granulocyte-macrophage colony-stimulating factor in preventing apoptosis and improving functional outcome in experimental spinal cord contusion injury. J Neurosurg Spine 2:55–61

    Article  PubMed  Google Scholar 

  12. Hofstetter CP, Schwarz EJ, Hess D, Widenfalk J, El Manira A, Prockop DJ, Olson L (2002) Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci USA 99:2199–2204. doi:10.1073/pnas.042678299

    Article  CAS  PubMed  Google Scholar 

  13. Huang X, Choi JK, Park SR, Ha Y, Park H, Yoon SH, Park HC, Park JO, Choi BH (2007) GM-CSF inhibits apoptosis of neural cells via regulating the expression of apoptosis-related proteins. Neurosci Res 58:50–57. doi:10.1016/j.neures.2007.01.015

    Article  CAS  PubMed  Google Scholar 

  14. Keane RW, Davis AR, Dietrich WD (2006) Inflammatory and apoptotic signaling after spinal cord injury. J Neurotrauma 23:335–344. doi:10.1089/neu.2006.23.335

    Article  PubMed  Google Scholar 

  15. Kim BG, Hwang DH, Lee SI, Kim EJ, Kim SU (2007) Stem cell-based cell therapy for spinal cord injury. Cell Transplant 16:355–364. doi:10.3727/000000007783472381

    Article  PubMed  Google Scholar 

  16. Lee JB, Kuroda S, Shichinohe H, Yano S, Kobayashi H, Hida K, Iwasaki Y (2004) A pre-clinical assessment model of rat autogeneic bone marrow stromal cell transplantation into the central nervous system. Brain Res Brain Res Protoc 14:37–44. doi:10.1016/j.brainresprot.2004.09.004

    Article  PubMed  Google Scholar 

  17. Liu W, Jiang X, Fu X, Cui S, Du M, Cai Y, Xu R (2008) Bone marrow stromal cells can be delivered to the site of traumatic brain injury via intrathecal transplantation in rabbits. Neurosci Lett 434:160–164. doi:10.1016/j.neulet.2007.12.067

    Article  CAS  PubMed  Google Scholar 

  18. Nandoe Tewarie RD, Hurtado A, Levi AD, Grotenhuis JA, Oudega M (2006) Bone marrow stromal cells for repair of the spinal cord: towards clinical application. Cell Transplant 15:563–577. doi:10.3727/000000006783981602

    Article  PubMed  Google Scholar 

  19. Nishio Y, Koda M, Kamada T, Someya Y, Kadota R, Mannoji C, Miyashita T, Okada S, Okawa A, Moriya H, Yamazaki M (2007) Granulocyte colony-stimulating factor attenuates neuronal death and promotes functional recovery after spinal cord injury in mice. J Neuropathol Exp Neurol 66:724–731. doi:10.1097/nen.0b013e3181257176

    Article  CAS  PubMed  Google Scholar 

  20. Parr AM, Tator CH, Keating A (2007) Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury. Bone Marrow Transplant 40:609–619. doi:10.1038/sj.bmt.1705757

    Article  CAS  PubMed  Google Scholar 

  21. Rice A, Reiffers J (1992) Mobilized blood stem cells: immunophenotyping and functional characteristics. J Hematother 1:19–26

    CAS  PubMed  Google Scholar 

  22. Schabitz WR, Kollmar R, Schwaninger M, Juettler E, Bardutzky J, Scholzke MN, Sommer C, Schwab S (2003) Neuroprotective effect of granulocyte colony-stimulating factor after focal cerebral ischemia. Stroke 34:745–751. doi:10.1161/01.STR.0000057814.70180.17

    Article  PubMed  Google Scholar 

  23. Schneider A, Kruger C, Steigleder T, Weber D, Pitzer C, Laage R, Aronowski J, Maurer MH, Gassler N, Mier W, Hasselblatt M, Kollmar R, Schwab S, Sommer C, Bach A, Kuhn HG, Schabitz WR (2005) The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis. J Clin Invest 115:2083–2098. doi:10.1172/JCI23559

    Article  CAS  PubMed  Google Scholar 

  24. Schultz SS (2005) Adult stem cell application in spinal cord injury. Curr Drug Targets 6:63–73. doi:10.2174/1389450053345046

    Article  CAS  PubMed  Google Scholar 

  25. Solaroglu I, Jadhav V, Zhang JH (2007) Neuroprotective effect of granulocyte-colony stimulating factor. Front Biosci 12:712–724. doi:10.2741/2095

    Article  CAS  PubMed  Google Scholar 

  26. Taguchi A, Soma T, Tanaka H, Kanda T, Nishimura H, Yoshikawa H, Tsukamoto Y, Iso H, Fujimori Y, Stern DM, Naritomi H, Matsuyama T (2004) Administration of CD34 + cells after stroke enhances neurogenesis via angiogenesis in a mouse model. J Clin Invest 114:330–338

    CAS  PubMed  Google Scholar 

  27. Urdzikova L, Jendelova P, Glogarova K, Burian M, Hajek M, Sykova E (2006) Transplantation of bone marrow stem cells as well as mobilization by granulocyte-colony stimulating factor promotes recovery after spinal cord injury in rats. J Neurotrauma 23:1379–1391. doi:10.1089/neu.2006.23.1379

    Article  PubMed  Google Scholar 

  28. Vaquero J, Zurita M, Oya S, Santos M (2006) Cell therapy using bone marrow stromal cells in chronic paraplegic rats: systemic or local administration? Neurosci Lett 398:129–134. doi:10.1016/j.neulet.2005.12.072

    Article  CAS  PubMed  Google Scholar 

  29. Whalley K, O’Neill P, Ferretti P (2006) Changes in response to spinal cord injury with development: vascularization, hemorrhage and apoptosis. Neuroscience 137:821–832. doi:10.1016/j.neuroscience.2005.07.064

    Article  CAS  PubMed  Google Scholar 

  30. Yano S, Kuroda S, Lee JB, Shichinohe H, Seki T, Ikeda J, Nishimura G, Hida K, Tamura M, Iwasaki Y (2005) In vivo fluorescence tracking of bone marrow stromal cells transplanted into a pneumatic injury model of rat spinal cord. J Neurotrauma 22:907–918. doi:10.1089/neu.2005.22.907

    Article  PubMed  Google Scholar 

  31. Zurita M, Vaquero J (2004) Functional recovery in chronic paraplegia after bone marrow stromal cells transplantation. Neuroreport 15:1105–1108. doi:10.1097/00001756-200405190-00004

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Liang-Chang Xiu, School of Public Health, Guangdong Medical College, for his diligent help on the statistic analysis. This study was supported by the grants from National Nature Science Foundation for Key projects of China (No. U0632008) and Key Fund of Guangdong Sci-Tech Research Projects [YUECAIJIAO(2008)258-(2008)A030201019, YEKEJIBAN (2007) 05/06-7005206]

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-quan Ke.

Additional information

Comments

This is an interesting paper with positive results. The authors demonstrate that, in a rat model, a combination of bone marrow stromal cells and growth factor can improve the functional and histological outcome after spinal cord injury. At present there are no therapies which improve outcome in patients after injury, but stem cell or reparative cell transplantations are a promising avenue which needs further evaluation at laboratory and translational level. Potential adult cell sources are particularly attractive candidates. However, whether these positive laboratory results translate to clinical practice is another matter, but it will be interesting to see how this develops.

David Choi

UK

Hong-tian Zhang and Jie Luo contributed equally to this study

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, J., Zhang, Ht., Jiang, Xd. et al. Combination of bone marrow stromal cell transplantation with mobilization by granulocyte-colony stimulating factor promotes functional recovery after spinal cord transection. Acta Neurochir 151, 1483–1492 (2009). https://doi.org/10.1007/s00701-009-0402-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-009-0402-6

Keywords

Navigation