Skip to main content

Advertisement

Log in

Hypophosphatemic rickets: etiology, clinical features and treatment

  • General Review
  • Published:
European Journal of Orthopaedic Surgery & Traumatology Aims and scope Submit manuscript

Abstract

Hypophosphatemic rickets (HR) is a genetic disorder, which prevents sufficient reabsorption of phosphate in the proximal renal tubule, with increased phosphate excretion, resulting in rickets. The more common form of HR is an X-linked inherited trait, with a prevalence of 1/20,000. The defective gene is located on the X chromosome, but females may present with a wide variety of clinical manifestations. The less common form of HR is caused by autosomal-dominant transmission. Activating mutations of the fibroblast growth factor 23 (FGF-23) gene and inactivating mutations in the phosphate regulating gene (PHEX gene with homologies to endopeptidases on the X chromosome), involved in the regulation of FGF-23, have been identified and have been implicated in the pathogenesis of these disturbances. A review of etiopathogenesis and clinical, differential diagnostic and therapeutic aspects of HR, with a particular emphasis on bone impairment, is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albright F, Butler AM, Bloomberg E (1937) Rickets resistant to vitamin D therapy. Am J Dis Child 54:529–547

    Google Scholar 

  2. Albright F, Reitenstein EC (1948) Parathyroid glands and metabolic bone disease. The Williams & Wilkins Co, Philadelphia

    Google Scholar 

  3. Arnstein AR, Frame B (1966) Primary hypophosphatemic rickets and osteomalacia: a review. Clin Orthop Relat Res 49:109–118

    Article  CAS  PubMed  Google Scholar 

  4. Barbour BH, KronWeld SJ, Pawlicki A (1964) On the mechanism of tubular reabsorption of phosphorous in vitamin D resistant rickets. Clin Res 12:247

    Google Scholar 

  5. de Beur SMJ, Levine MA (2002) Molecular pathogenesis of hypophosphatemic rickets. J Clin Endocrinol Metab 87:2467–2473

    Article  Google Scholar 

  6. Wharton B, Bishop N (2003) Rickets. Lancet 362:1389–1400

    Article  CAS  PubMed  Google Scholar 

  7. Tenenhouse HS, Beck L (1966) Renal Na–P cotransporter gene expression in X-linked Hyp and Gy mice. Kidney Int 49:1027–1032

    Article  Google Scholar 

  8. Cho HY, Lee BJ, Kang JH, Ha IS et al (2005) A clinical and molecular genetic study of hypophosphatemic rickets in children. Pediatr Res 58(2):329–333

    Article  CAS  PubMed  Google Scholar 

  9. Bielesz B, Klaushofer K, Oberbauer R (2004) Renal phosphate loss in hereditary and acquired disorders of bone mineralization. Bone 35:1229–1239

    Article  CAS  PubMed  Google Scholar 

  10. Bowe AE, Finnegan R, de Beur SMJ et al (2001) FGF-23 inhibits renal tubular phosphate transport and is a PHEX substrate. Biochem Biophys Res Commun 284:977–981

    Article  CAS  PubMed  Google Scholar 

  11. Beck L, Soumounou Y, Martel J et al (1997) Pex/PEX tissue distribution and evidence for a deletion in the 3′ region of the Pex gene in X-linked hypophosphatemic mice. J Clin Invest 99:1200–1209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Levy-Litan V, Hershkowitz E, Avizov L et al (2010) Autosomal-recessive hypophosphatemic rickets is associated with an inactivation mutation in the ENPP1 gene. Am J Hum Genet 86:273–278

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Rutsch F, Ruf N, Vaingankar S et al (2003) Mutations in ENPP1 are associated with ‘idiopathic’ infantile arterial calcification. Nat Genet 34:379–381

    Article  CAS  PubMed  Google Scholar 

  14. Shimada T, Hasegawa H, Yamazaki Y et al (2004) FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 19:429–435

    Article  CAS  PubMed  Google Scholar 

  15. Farrow EG, White KE (2010) Recent advances in renal phosphate handling. Nat Rev Nephrol 6:207–217

    Article  PubMed Central  PubMed  Google Scholar 

  16. Hu MC, Shi M, Zhang J et al (2010) Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J 24:3438–3450

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Quarles LD (2003) Evidence for a bone–kidney axis regulating phosphate homeostasis. J Clin Invest 112:642–646

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Jonsson KB, Zahradnik R, Larsson T et al (2003) Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. N Engl J Med 348:1656–1663

    Article  CAS  PubMed  Google Scholar 

  19. de Menezes FH, de Castro LC, Damiani D (2006) Hypophosphatemic rickets and osteomalacia. Arq Bras Endocrinol Metabol 50(4):802–813

    Article  Google Scholar 

  20. Gaasbeek A, Meinders AE (2005) Hypophosphatemia: an update on its etiology and treatment. Am J Med 118:1094–1101

    Article  CAS  PubMed  Google Scholar 

  21. Amanzadeh J, Reilly RF Jr (2006) Hypophosphatemia: an evidence-based approach to its clinical consequences and management. Nat Clin Pract Nephrol 2:136–148

    Article  CAS  PubMed  Google Scholar 

  22. Murer H, Forster I, Biber J (2004) The sodium phosphate cotransporter family SLC34. Pflugers Arch 447:763–767

    Article  CAS  PubMed  Google Scholar 

  23. Favus MJ (2002) Intestinal absorption of calcium, magnesium and phosphorus. In: Favus MJ, Coe FL (eds) Disorders of bone and mineral metabolism, 2nd edn. Lippincott Williams and Wilkins, New York, pp 48–73

    Google Scholar 

  24. Segawa H, Kaneko I, Yamanaka S et al (2004) Intestinal Na–P(i) cotransporter adaptation to dietary P(i) content in vitamin D receptor null mice. Am J Physiol Renal Physiol 287:F39–F47

    Article  CAS  PubMed  Google Scholar 

  25. Glorieux FH, Marie PJ, Pettifor JM et al (1980) Bone response to phosphate salts, ergocalciferol, and calcitriol in hypophosphatemic vitamin D-resistant rickets. N Engl J Med 303:1023–1031

    Article  CAS  PubMed  Google Scholar 

  26. Root AW, Diamond FB Jr (2002) Disorders of calcium metabolism in the child and adolescent. In: Saunders WB (ed) Pediatric endocrinology, vol 646, 2nd edn. Sperling, Philadelphia

    Google Scholar 

  27. Gordon C, DePeter K, Feldman H et al (2004) Prevalence of vitamin D deficiency among healthy adolescents. Arch Pediatr Adolesc Med 158:531–537

    Article  PubMed  Google Scholar 

  28. Pettifor JM (2003) Nutritional and drug-induced rickets and osteomalacia. In: Favus MJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism, vol 399, 5th edn. American Society for Bone and Mineral Research, Washington

    Google Scholar 

  29. Mughal Z (2002) Rickets in childhood. Semin Musculoskelet Radiol 6:183–190

    Article  PubMed  Google Scholar 

  30. Holm IA, Econs MJ, Carpenter TO (2003) Familial hypophosphatemia and related disorders. In: Juppner H, Pettifor JM, Glorieux FH (eds) Pediatric bone: biology and diseases. Academic Press, San Diego, pp 603–631

    Chapter  Google Scholar 

  31. Petje G, Meizer R, Radler C et al (2008) Deformity correction in children with hereditary hypophosphatemic rickets. Clin Orthop Relat Res 466(12):3078–3085

    Article  PubMed Central  PubMed  Google Scholar 

  32. Carpenter TO, Imel AE, Holm IA et al (2011) A clinician’s guide to X-linked hypophosphatemia. J Bone Miner Res 26(7):1381–1388

    Article  PubMed Central  PubMed  Google Scholar 

  33. Sayer JA, Pearce SH (2001) Diagnosis and clinical biochemistry of inherited tubulopathies. Ann Clin Biochem 38:459–470

    Article  CAS  PubMed  Google Scholar 

  34. Tenenhouse HS, Econs MJ (2001) Mendelian hypophosphatemias. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular basis of inherited disease, 8th edn.  McGraw Hill, New York, pp 5039–5067

  35. Moncrieff MW (1982) Early biochemical findings in familial hypophosphatemic, hyperphosphaturic rickets and response to treatment. Arch Dis Child 57:70–72

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Makitie O, Doria A, Kooh SW et al (2003) Early treatment improves growth and biochemical and radiographic outcome in X-linked hypophosphatemic rickets. J Clin Endocrinol Metab 88:3591–3597

    Article  CAS  PubMed  Google Scholar 

  37. Verge CF, Lam A, Simpson JM et al (1991) Effects of therapy in X-linked hypophosphatemic rickets. N Engl J Med 325:1843–1848

    Article  CAS  PubMed  Google Scholar 

  38. Petersen DJ, Boniface AM, Schranck FW et al (1992) X-linked hypophosphatemic rickets: a study (with literature review) of linear growth response to calcitriol and phosphate therapy. J Bone Miner Res 7:583–590

    Article  CAS  PubMed  Google Scholar 

  39. Makitie O, Kooh SW, Sochett E (2003) Prolonged high-dose phosphate treatment: a risk factor for tertiary hyperparathyroidism in X-linked hypophosphatemic rickets. Clin Endocrinol 58:163–168

    Article  CAS  Google Scholar 

  40. Harrell RM, Lyles KW, Harrelson JM et al (1985) Healing of bone disease in X-linked hypophosphatemic rickets/osteomalacia. Induction and maintenance with phosphorus and calcitriol. J Clin Invest 75:1858–1868

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Carpenter TO (1997) New perspectives on the biology and treatment of X-linked hypophosphatemic rickets. Pediatr Clin North Am 44:443–466

    Article  CAS  PubMed  Google Scholar 

  42. Patel L, Clayton PE, Brain C et al (1996) Acute biochemical effects of growth hormone treatment compared with conventional treatment in familial hypophosphataemic rickets. Clin Endocrinol 44:687–696

    Article  CAS  Google Scholar 

  43. Ariceta G, Langman CB (2007) Growth in X-linked hypophosphatemic rickets. Eur J Pediatr 166:303–309

    Article  CAS  PubMed  Google Scholar 

  44. Makitie O, Toiviainen-Salo S, Marttinen E et al (2008) Metabolic control and growth during exclusive growth hormone treatment in X-linked hypophosphatemic rickets. Horm Res 69:212–220

    Article  PubMed  Google Scholar 

  45. Haffner D, Wuhl E, Blum WF et al (1995) Disproportionate growth following long-term growth hormone treatment in short children with X-linked hypophosphataemia. Eur J Pediatr 154:610–613

    Article  CAS  PubMed  Google Scholar 

  46. Ferris B, Walker C, Jackson A et al (1991) Orthopaedic management of hypophosphatemic rickets. J Pediatr Orthop 11:367–373

    Article  CAS  PubMed  Google Scholar 

  47. Eyres KS, Brown J, Douglas DL (1993) Osteotomy and intramedullary nailing for the correction of progressive deformity in vitamin D-resistant hypophosphatemic rickets. J R Coll Surg Edinb 38:50–54

    CAS  PubMed  Google Scholar 

  48. Novais E, Stevens PM (2006) Hypophosphatemic rickets: the role of hemiepiphysiodesis. J Pediatr Orthop 26:238–244

    Article  PubMed  Google Scholar 

  49. Rubinovitch M, Said SE, Glorieux FH et al (1988) Principles and results of corrective lower limb osteotomies for patients with vitamin D-resistant hypophosphatemic rickets. Clin Orthop Relat Res 237:264–270

    PubMed  Google Scholar 

  50. Alon US, Monzavi R, Lilien M et al (2003) Hypertension in hypophosphatemic rickets—role of secondary hyperparathyroidism. Pediatr Nephrol 18:155–158

    PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vito Pavone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavone, V., Testa, G., Gioitta Iachino, S. et al. Hypophosphatemic rickets: etiology, clinical features and treatment. Eur J Orthop Surg Traumatol 25, 221–226 (2015). https://doi.org/10.1007/s00590-014-1496-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00590-014-1496-y

Keywords

Navigation