Skip to main content
Log in

Influence of high-heeled shoes on the sagittal balance of the spine and the whole body

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Wearing high heels is associated with chronic pain of the neck, lower back and knees. The mechanisms behind this have not been fully understood. The purpose of this study was to investigate the influence of high-heeled shoes on the sagittal balance of the spine and the whole body in non-habitual wearers of high heels.

Methods

Lateral standing whole body low-dose radiographs were obtained from 23 female participants (age 29 ± 6 years) with and without high heels and radiological parameters describing the sagittal balance were quantified. These were analyzed for differences between both conditions in the total sample and in subgroups.

Results

Standing in high heels was associated with an increased femoral obliquity angle [difference (Δ) 3.0° ± 1.7°, p < 0.0001], and increased knee (Δ 2.4° ± 2.9°, p = 0.0009) and ankle flexion (Δ 38.7° ± 3.4°, p < 0.0001). The differences in C7 and meatus vertical axis, cervical and lumbar lordosis, thoracic kyphosis, spino-sacral angle, pelvic tilt, sacral slope, and spinal tilt were not significant. Individuals adapting with less-than-average knee flexion responded to high heels by an additional increase in cervical lordosis (Δ 5.8° ± 10.7° vs. 1.8° ± 5.3°).

Conclusions

In all participants, wearing high heels led to increased flexion of the knees and to more ankle flexion. While some participants responded to high heels primarily through the lower extremities, others used increased cervical lordosis to adapt to the shift of the body’s center of gravity. This could explain the different patterns of pain in the neck, lower back and knees seen in individuals wearing high heels frequently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Silva AM, de Siqueira GR, da Silva GA (2013) Implications of high-heeled shoes on body posture of adolescents. Rev Paul Pediatr 31:265–271

    Article  PubMed  Google Scholar 

  2. Lee C-M, Jeonga E-H, Freivalds A (2001) Biomechanical effects of wearing high-heeled shoes. Int J Ind Ergon 28:321–326

    Article  Google Scholar 

  3. Hoy D, Brooks P, Blyth F, Buchbinder R (2010) The epidemiology of low back pain. Best Pract Res Clin Rheumatol 24:769–781

    Article  CAS  PubMed  Google Scholar 

  4. Pezzan, PA, João SM, Ribeiro AP, Manfio EF (2011) Postural assessment of lumbar lordosis and pelvic alignment angles in adolescent users and nonusers of high-heeled shoes. J Manip Physiol Ther 34(9):614–621. doi:10.1016/j.jmpt.2011.09.006

    Article  Google Scholar 

  5. Dai M, Li X, Zhou X, Hu Y, Luo Q, Zhou S (2015) High-heeled-related alterations in the static sagittal profile of the spino-pelvic structure in young women. Eur Spine J 24:1274–1281

    Article  PubMed  Google Scholar 

  6. Cronin NJ (2014) The effects of high heeled shoes on female gait: a review. J Electromyogr Kinesiol 24:258–263

    Article  PubMed  Google Scholar 

  7. Mika A, Oleksy L, Mika P, Marchewka A, Clark BC (2012) The effect of walking in high- and low-heeled shoes on erector spinae activity and pelvis kinematics during gait. Am J Phys Med Rehabil 91:425–434

    Article  PubMed  Google Scholar 

  8. Barton CJ, Coyle JA, Tinley P (2009) The effect of heel lifts on trunk muscle activation during gait: a study of young healthy females. J Electromyogr Kinesiol 19:598–606

    Article  PubMed  Google Scholar 

  9. Russell BS (2010) The effect of high-heeled shoes on lumbar lordosis: a narrative review and discussion of the disconnect between Internet content and peer-reviewed literature. J Chiropr Med 9:166–173

    Article  PubMed  PubMed Central  Google Scholar 

  10. Russell BS (2015) Letter to the Editor concerning “High-heeled-related alterations in the static sagittal profile of the spino-pelvic structure in young women” by Min Dai et al [Eur Spine J]. Eur Spine J 24:1826–1827. doi:10.1007/s00586-015-3857-6

    Article  PubMed  Google Scholar 

  11. Opila KA, Wagner SS, Schiowitz S, Chen J (1988) Postural alignment in barefoot and high-heeled stance. Spine (Phila Pa 1976) 13:542–547

    Article  CAS  Google Scholar 

  12. Russell BS, Muhlenkamp KA, Hoiriis KT, Desimone CM (2012) Measurement of lumbar lordosis in static standing posture with and without high-heeled shoes. J Chiropr Med 11:145–153

    Article  PubMed  PubMed Central  Google Scholar 

  13. Drzal-Grabiec J, Snela S (2013) Effect of high-heeled shoes on the parameters of body posture. Spine (Phila Pa 1976) 38:1785–1789

    Article  Google Scholar 

  14. Snow RE, Williams KR (1994) High heeled shoes: their effect on center of mass position, posture, three-dimensional kinematics, rearfoot motion, and ground reaction forces. Arch Phys Med Rehabil 75:568–576

    CAS  PubMed  Google Scholar 

  15. Roussouly P, Gollogly S, Noseda O, Berthonnaud E, Dimnet J (2006) The vertical projection of the sum of the ground reactive forces of a standing patient is not the same as the C7 plumb line: a radiographic study of the sagittal alignment of 153 asymptomatic volunteers. Spine (Phila Pa 1976) 31:E320–E325

    Article  Google Scholar 

  16. Dupont WD, Plummer WD (1998) Power and sample size calculations for studies involving linear regression. Control Clin Trials 19(6):589–601

    Article  CAS  PubMed  Google Scholar 

  17. McKenna C, Wade R, Faria R, Yang H, Stirk L, Gummerson N, Sculpher M, Woolacott N (2012) EOS 2D/3D X-ray imaging system: a systematic review and economic evaluation. Health Technol Assess 16:1–188

    Article  CAS  PubMed Central  Google Scholar 

  18. Quian BP, Jiang J, Qui Y, Wang B, Yu Y, Zhu Z (2014) The presence of a negative sacral slope in patients with ankylosing spondylitis with severe thoracolumbar kyphosis. J Bone Jt Surg Am 96:1–6

    Google Scholar 

  19. Scheer JK, Tang JA, Smith JS, Acosta FL Jr, Protopsaltis TS, Blondel B, Bess S, Shaffrey CI, Deviren V, Lafage V, Schwab F, Ames CP, International Spine Study G (2013) Cervical spine alignment, sagittal deformity, and clinical implications: a review. J Neurosurg Spine 19:141–159

    Article  PubMed  Google Scholar 

  20. Legaye J, Duval-Beaupere G, Hecquet J, Marty C (1998) Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur Spine J 7:99–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barrey C, Roussouly P, Le Huec JC, D’Acunzi G, Perrin G (2013) Compensatory mechanisms contributing to keep the sagittal balance of the spine. Eur Spine J 22(Suppl 6):834–841

    Article  PubMed Central  Google Scholar 

  22. Healy GN, Winkler EA, Owen N, Anuradha S, Dunstan DW (2015) Replacing sitting time with standing or stepping: associations with cardio-metabolic risk biomarkers. Eur Heart J 36:2643–2649

    Article  PubMed  Google Scholar 

  23. Ho KY, Blanchette MG, Powers CM (2012) The influence of heel height on patellofemoral joint kinetics during walking. Gait Posture 36:271–275

    Article  PubMed  Google Scholar 

  24. Kerrigan DC, Todd MK, Riley PO (1998) Knee osteoarthritis and high-heeled shoes. Lancet 351:1399–1401

    Article  CAS  PubMed  Google Scholar 

  25. Mika A, Oleksy L, Mikolajczyk E, Marchewka A, Mika P (2011) Changes of bioelectrical activity in cervical paraspinal muscle during gait in low and high heel shoes. Acta Bioeng Biomech 13:27–33

    PubMed  Google Scholar 

  26. Han D (2015) Muscle activation of paraspinal muscles in different types of high heels during standing. J Phys Ther Sci 27:67–69

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Osterhoff.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Funding

This study was not founded by any external source.

Appendices

Appendix 1: measured and derived (high heels (HH) minus barefoot (SL) differences) radiological parameters

The table below summarizes the quantified radiological parameters under barefoot and high heels conditions, as well as the parameters derived from the intra-individual high heels minus barefoot differences. The rightmost column contains the between-conditions correlation coefficients [r(BF, HH)] as well as the paired t test p values of the differences between the conditions.

Parameter

N

M

SD

Min.

Max.

[r(BF, HH)] p

SL C7 sagittal vertical axis (cm)

23

−0.09

1.90

−3.4

3.2

 

HH C7 sagittal vertical axis (cm)

23

−0.62

2.28

−4.1

3.7

[0.59]

Δ C7 sagittal vertical axis (cm)

23

−0.53

1.93

−3.4

3.6

0.2008

SL Meatus sag. vert. axis (cm)

22

−1.61

2.35

−6.7

1.7

 

HH Meatus sag. vert. axis (cm)

23

−1.09

2.66

−5.1

5.7

[0.19]

Δ Meatus sag. vert. axis (cm)

22

0.64

3.20

−4.7

8.1

0.3582

SL Cervical lordosis (°)

23

0.52

9.87

−18.0

17.0

 

HH Cervical lordosis (°)

23

−1.70

14.83

−37.0

22.0

[0.80]

Δ Cervical lordosis (°)

23

−2.22

9.17

−25.0

12.0

0.2589

SL Thoracic kyphosis (°)

23

32.91

7.90

13.0

49.0

 

HH Thoracic kyphosis (°)

23

32.26

8.52

12.0

48.0

[0.84]

Δ Thoracic kyphosis (°)

23

−0.65

4.65

−8.0

8.0

0.5080

SL Lumbar lordosis (°)

23

−58.87

9.47

−77.0

−46.0

 

HH Lumbar lordosis (°)

23

−58.83

10.18

−77.0

−42.0

[0.91]

Δ Lumbar lordosis (°)

23

0.04

4.26

−8.0

10.0

0.9614

SL Spino-sacral angle (°)

23

133.83

7.51

120.0

156.0

 

HH Spino-sacral angle (°)

23

134.22

6.97

120.0

150.0

[0.90]

Δ Spino-sacral angle (°)

23

0.39

3.31

−7.0

5.0

0.5768

SL Pelvic incidence (°)

23

54.26

10.04

33.0

70.0

 

HH Pelvic incidence (°)

23

54.26

10.04

33.0

70.0

[1.00]

Δ Pelvic incidence (°)

23

0.00

0.00

0.0

0.0

n.a.

SL Pelvic tilt (°)

23

11.78

6.88

−1.0

21.0

 

HH Pelvic tilt (°)

23

12.57

6.01

1.0

22.0

[0.90]

Δ Pelvic tilt (°)

23

0.78

3.00

−5.0

7.0

0.2239

SL Sacral slope (°)

23

42.48

7.19

32.0

62.0

 

HH Sacral slope (°)

23

41.65

7.42

28.0

55.0

[0.92]

Δ Sacral slope (°)

23

−0.83

2.99

−7.0

6.0

0.1994

SL Spinal tilt (°)

23

91.78

2.56

87.0

96.0

 

HH Spinal tilt (°)

23

92.74

3.22

86.0

98.0

[0.58]

Δ Spinal tilt (°)

23

0.96

2.72

−4.0

7.0

0.1060

SL Femoral obliquity angle (°)

22

−6.77

2.16

−11.0

−1.0

 

HH Femoral obliquity angle (°)

23

−3.78

2.19

−8.0

0.0

[0.72]

Δ Fem. ob. angle (°)

22

3.00

1.66

0.0

7.0

<0.0001

SL Knee flexion angle (°)

22

−5.50

3.62

−12.0

2.0

 

HH Knee flexion angle (°)

23

−3.26

3.91

−10.0

3.0

[0.72]

Δ Knee flexion angle (°)

22

2.36

2.87

−2.0

12.0

0.0009

SL Ankle flexion angle (°)

22

−1.50

1.92

−4.0

2.0

 

HH Ankle flexion angle (°)

23

37.13

3.39

31.0

43.0

[0.30]

Δ Ankle flexion angle (°)

22

38.73

3.40

31.0

44.0

<0.0001

  1. N number of individuals, M mean, SD standard deviation, Min. minimum, Max. maximum

Appendix 2: subgroup analysis

Description of the high heels minus barefoot difference values of the radiological parameters in the two subgroups obtained by splitting the sample at the mean of the knee flexion angle (2.36°). The column “Adaptation Knee” signifies below-average (n = 12) by “No”, and above-average knee flexion (n = 10) by “Yes”. The difference of the means of the two subgroups is contained in the difference column, along with its 95 % confidence interval (CI confidence interval, LL lower limit, UL upper limit). Statistical significance at the local 5 %-level can be concluded from the CIs when they do not cover the null difference. For convenience, unpaired t test p values are provided in brackets for the differences in means.

Parameter

Adaptation knee

N

M

SD

95 % CI

Difference (p)

95 % CI

LL

UL

LL

UL

Δ C7 sagittal vertical axis (cm)

No

12

0.01

1.96

−1.24

1.25

0.96

−0.72

2.63

Yes

10

−0.95

1.80

−2.24

0.34

(0.2464)

  

Δ Meatus sagittal vertical axis (cm)

No

12

1.13

2.84

−0.67

2.94

1.08

−1.87

4.04

Yes

10

0.05

3.65

−2.56

2.66

(0.4567)

  

Δ Cervical lordosis (°)

No

12

−5.83

10.74

−12.66

0.99

−7.63

−14.99

−0.28

Yes

10

1.80

5.31

−2.00

5.60

(0.0459)

  

Δ Thoracic kyphosis (°)

No

12

−1.42

4.74

−4.43

1.59

−1.92

−6.15

2.32

Yes

10

0.50

4.74

−2.89

3.89

(0.3560)

  

Δ Lumbar lordosis (°)

No

12

1.33

3.92

−1.15

3.82

2.63

−1.19

6.46

Yes

10

−1.30

4.57

−4.57

1.97

(0.1700)

  

Δ Spino-sacral angle (°)

No

12

−0.33

3.55

−2.59

1.92

−1.13

−3.98

1.72

Yes

10

0.80

2.86

−1.25

2.85

(0.4186)

  

Δ Pelvic tilt (°)

No

12

0.42

3.68

−1.92

2.75

−0.58

−3.22

2.05

Yes

10

1.00

2.16

−0.55

2.55

(0.6516)

  

Δ Sacral slope (°)

No

12

−0.50

3.66

−2.82

1.82

0.40

−2.19

2.99

Yes

10

−0.90

2.08

−2.39

0.59

(0.7518)

  

Δ Spinal tilt (°)

No

12

0.08

2.35

−1.41

1.58

−1.62

−4.02

0.79

Yes

10

1.70

2.95

−0.41

3.81

(0.1782)

  

Δ Femoral obliquity angle (°)

No

12

2.00

1.04

1.34

2.66

−2.20

−3.36

−1.04

Yes

10

4.20

1.48

3.14

5.26

(0.0013)

  

Δ Ankle flexion angle (°)

No

12

39.42

3.03

37.49

41.34

1.52

−1.58

4.62

Yes

10

37.90

3.79

35.20

40.61

(0.3200)

  

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weitkunat, T., Buck, F.M., Jentzsch, T. et al. Influence of high-heeled shoes on the sagittal balance of the spine and the whole body. Eur Spine J 25, 3658–3665 (2016). https://doi.org/10.1007/s00586-016-4621-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-016-4621-2

Keywords

Navigation