Skip to main content
Log in

Magnetic resonance imaging signal changes of alar and transverse ligaments not correlated with whiplash-associated disorders

A meta-analysis of case–control studies

  • Review Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Hypothesis that loss of integrity of the membranes in the craniocervical junction might be the cause of neck pain in patients with whiplash-associated disorders (WADs) has been proposed. In recent years, with development of more detailed magnetic resonance imaging (MRI) techniques, morphologic changes of the ligaments and membranes in the craniocervical junction, especially alar and transverse ligaments have been discussed. A meta-analysis was performed to evaluate the relationship of MRI signal changes of alar and transverse ligaments and WADs.

Methods

A systematic search of EMBASE, PUBMED, and Cochrane Library and references from eligible articles were conducted. Comparative studies reporting on evaluating the relationship between MRI high-signal changes of alar and transverse ligaments and WADs were regarded eligible. A pooled estimate of effect size was produced.

Results

Alar ligaments: Six studies (total n = 622) were included. MRI signal changes of alar ligaments did not appear to be related with WADs (P = 0.20, OR = 1.54, 95 % CI = 0.80–2.94). Heterogeneity was present (I 2 = 46 %, P = 0.10), which was eliminated upon sensitivity analysis bringing the OR to 1.27 (95 % CI = 0.87–1.86, I 2 = 0 %). Transverse ligaments: Four studies (total n = 489) were included. MRI signal changes of transverse ligament did not appear to be related with WADs (P = 0.51, OR = 1.44, 95 % CI = 0.49–4.21). Heterogeneity was present (I 2 = 77 %, P = 0.005), which was eliminated upon sensitivity analysis bringing the OR to 0.79 (95 % CI = 0.49–1.28, I 2 = 0 %).

Conclusion

MRI signal changes of alar and transverse ligaments are not supposed to be caused by whiplash injury, and MRI examination of alar and transverse ligaments should not be used as the routine workup of patients with WADs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Crouch R, Whitewick R, Clancy M, Wright P, Thomas P (2006) Whiplash associated disorder: incidence and natural history over the first month for patients presenting to a UK emergency department. Emerg Med J 23:114–118

    Article  PubMed  CAS  Google Scholar 

  2. Ferrari R, Russell AS, Carroll LJ, Cassidy JD (2005) A re-examination of the whiplash associated disorders (WAD) as a systemic illness. Ann Rheum Dis 64:1337–1342

    Article  PubMed  CAS  Google Scholar 

  3. Miettinen T, Leino E, Airaksinen O, Lindgren KA (2004) Whiplash injuries in Finland: the situation 3 years later. Eur Spine J 13:415–418

    Article  PubMed  Google Scholar 

  4. Schmitt MA, van Meeteren NL, de Wijer A, Helders PJ, Graaf Y (2008) Functional health status in subjects after a motor vehicle accident, with emphasis on whiplash associated disorders: design of a descriptive, prospective inception cohort study. BMC Musculoskelet Disord 9:168

    Article  PubMed  Google Scholar 

  5. Ivancic PC, Pearson AM, Panjabi MM, Ito S (2004) Injury of the anterior longitudinal ligament during whiplash simulation. Eur Spine J 13:61–68

    Article  PubMed  CAS  Google Scholar 

  6. Ichihara D, Okada E, Chiba K, Toyama Y, Fujiwara H, Momoshima S, Nishiwaki Y, Hashimoto T, Ogawa J, Watanabe M, Takahata T, Matsumoto M (2009) Longitudinal magnetic resonance imaging study on whiplash injury patients: minimum 10-year follow-up. J Orthop Sci: official journal of the Japanese Orthopaedic Association 14:602–610

    Article  Google Scholar 

  7. Yoganandan N, Cusick JF, Pintar FA, Rao RD (2001) Whiplash injury determination with conventional spine imaging and cryomicrotomy. Spine (Phila Pa 1976) 26:2443–2448

    Article  CAS  Google Scholar 

  8. Ivancic PC, Ito S, Tominaga Y, Rubin W, Coe MP, Ndu AB, Carlson EJ, Panjabi MM (2008) Whiplash causes increased laxity of cervical capsular ligament. Clin Biomech (Bristol, Avon) 23:159–165

    Article  Google Scholar 

  9. Ito S, Panjabi MM, Ivancic PC, Pearson AM (2004) Spinal canal narrowing during simulated whiplash. Spine (Phila Pa 1976) 29:1330–1339

    Article  Google Scholar 

  10. Elliott J, Jull G, Noteboom JT, Darnell R, Galloway G, Gibbon WW (2006) Fatty infiltration in the cervical extensor muscles in persistent whiplash-associated disorders: a magnetic resonance imaging analysis. Spine (Phila Pa 1976) 31:847–855

    Article  Google Scholar 

  11. Elliott J, Jull G, Noteboom JT, Galloway G (2008) MRI study of the cross-sectional area for the cervical extensor musculature in patients with persistent whiplash associated disorders (WAD). Manual therapy 13:258–265

    Article  PubMed  Google Scholar 

  12. Elliott JM, Cherry J (2008) Upper cervical ligamentous disruption in a patient with persistent whiplash associated disorders. J Orthop Sports Phys Ther 38:377

    PubMed  Google Scholar 

  13. Dickman CA, Greene KA, Sonntag VK (1996) Injuries involving the transverse atlantal ligament: classification and treatment guidelines based upon experience with 39 injuries. Neurosurgery 38:44–50

    Article  PubMed  CAS  Google Scholar 

  14. Fielding JW, Cochran GB, Lawsing JF 3rd, Hohl M (1974) Tears of the transverse ligament of the atlas. A clinical and biomechanical study. J Bone Joint Surg Am 56:1683–1691

    PubMed  CAS  Google Scholar 

  15. Saternus KS, Thrun C (1987) Traumatology of the alar ligaments. Aktuelle Traumatologie 17:214–218

    PubMed  CAS  Google Scholar 

  16. Obenauer S, Herold T, Fischer U, Fadjasch G, Koebke J, Grabbe E, Saternus KS (1999) The evaluation of experimentally induced injuries to the upper cervical spine with a digital X-ray technic, computed tomography and magnetic resonance tomography. Rofo 171:473–479

    Article  PubMed  CAS  Google Scholar 

  17. Pfirrmann CW, Binkert CA, Zanetti M, Boos N, Hodler J (2001) MR morphology of alar ligaments and occipitoatlantoaxial joints: study in 50 asymptomatic subjects. Radiology 218:133–137

    PubMed  CAS  Google Scholar 

  18. Krakenes J, Kaale BR (2006) Magnetic resonance imaging assessment of craniovertebral ligaments and membranes after whiplash trauma. Spine 31:2820–2826

    Article  PubMed  Google Scholar 

  19. Benedetti PF, Fahr LM, Kuhns LR, Hayman LA (2000) MR imaging findings in spinal ligamentous injury. AJR Am J Roentgenol 175:661–665

    PubMed  CAS  Google Scholar 

  20. Krakenes J, Kaale BR, Moen G, Nordli H, Gilhus NE, Rorvik J (2002) MRI assessment of the alar ligaments in the late stage of whiplash injury—a study of structural abnormalities and observer agreement. Neuroradiology 44:617–624

    Article  PubMed  CAS  Google Scholar 

  21. Krakenes J, Kaale BR, Moen G, Nordli H, Gilhus NE, Rorvik J (2003) MRI of the tectorial and posterior atlanto-occipital membranes in the late stage of whiplash injury. Neuroradiology 45:585–591

    Article  PubMed  CAS  Google Scholar 

  22. Dullerud R, Gjertsen O, Server A (2010) Magnetic resonance imaging of ligaments and membranes in the craniocervical junction in whiplash-associated injury and in healthy control subjects. Acta Radiol (Stockholm, Sweden: 1987) 51:207–212

    Article  Google Scholar 

  23. Krakenes J, Kaale BR, Nordli H, Moen G, Rorvik J, Gilhus NE (2003) MR analysis of the transverse ligament in the late stage of whiplash injury. Acta Radiol (Stockholm, Sweden: 1987) 44:637–644

    CAS  Google Scholar 

  24. Lindgren KA, Kettunen JA, Paatelma M, Mikkonen RH (2009) Dynamic kine magnetic resonance imaging in whiplash patients and in age- and sex-matched controls. Pain Res Manag 14:427–432

    PubMed  Google Scholar 

  25. Myran R, Kvistad KA, Nygaard OP, Andresen H, Folvik M, Zwart JA (2008) Magnetic resonance imaging assessment of the alar ligaments in whiplash injuries: a case–control study. Spine 33:2012–2016

    Article  PubMed  Google Scholar 

  26. Vetti N, Krakenes J, Damsgaard E, Rorvik J, Gilhus NE, Espeland A (2011) Magnetic resonance imaging of the alar and transverse ligaments in acute whiplash-associated disorders 1 and 2: a cross-sectional controlled study. Spine 36:E434–E440

    Article  PubMed  Google Scholar 

  27. Wilmink JT, Patijn J (2001) MR imaging of alar ligament in whiplash-associated disorders: an observer study. Neuroradiology 43:859–863

    Article  PubMed  CAS  Google Scholar 

  28. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA, J Am Med Assoc 283:2008–2012

    Article  CAS  Google Scholar 

  29. Spitzer WO, Skovron ML, Salmi LR, Cassidy JD, Duranceau J, Suissa S, Zeiss E (1995) Scientific monograph of the Quebec Task Force on Whiplash-Associated Disorders: redefining “whiplash” and its management. Spine (Phila Pa 1976) 20:1S–73S

    Article  CAS  Google Scholar 

  30. Lau J, Ioannidis JP, Schmid CH (1997) Quantitative synthesis in systematic reviews. Ann Intern Med 127:820–826

    PubMed  CAS  Google Scholar 

  31. Begg CB, Mazumdar M (1994) Operating characteristics of a rank correlation test for publication bias. Biometrics 50:1088–1101

    Article  PubMed  CAS  Google Scholar 

  32. Ulbrich EJ, Eigenheer S, Boesch C, Hodler J, Busato A, Schraner C, Anderson SE, Bonel H, Zimmermann H, Sturzenegger M (2011) Alterations of the transverse ligament: an MRI study comparing patients with acute whiplash and matched control subjects. AJR Am J Roentgenol 197:961–967

    Article  PubMed  Google Scholar 

  33. Knackstedt H, Krakenes J, Bansevicius D, Russell MB (2012) Magnetic resonance imaging of craniovertebral structures: clinical significance in cervicogenic headaches. J Headache Pain 13:39–44

    Article  PubMed  Google Scholar 

  34. Kjellin I, Ho CP, Cervilla V, Haghighi P, Kerr R, Vangness CT, Friedman RJ, Trudell D, Resnick D (1991) Alterations in the supraspinatus tendon at MR imaging: correlation with histopathologic findings in cadavers. Radiology 181:837–841

    PubMed  CAS  Google Scholar 

  35. Makino A, Pascual-Garrido C, Rolon A, Isola M, Muscolo DL (2011) Mucoid degeneration of the anterior cruciate ligament: MRI, clinical, intraoperative, and histological findings. Knee Surg Sports Traumatol Arthrosc 19:408–411

    Article  PubMed  Google Scholar 

  36. Schweitzer ME, Mitchell DG, Ehrlich SM (1993) The patellar tendon: thickening, internal signal buckling, and other MR variants. Skeletal Radiol 22:411–416

    Article  PubMed  CAS  Google Scholar 

  37. Vetti N, Krakenes J, Eide GE, Rorvik J, Gilhus NE, Espeland A (2009) MRI of the alar and transverse ligaments in whiplash-associated disorders (WAD) grades 1–2: high-signal changes by age, gender, event and time since trauma. Neuroradiology 51:227–235

    Article  PubMed  Google Scholar 

  38. Cushner FD, La Rosa DF, Vigorita VJ, Scuderi GR, Scott WN, Insall JN (2003) A quantitative histologic comparison: ACL degeneration in the osteoarthritic knee. J Arthroplasty 18:687–692

    Article  PubMed  Google Scholar 

  39. Mullaji AB, Marawar SV, Simha M, Jindal G (2008) Cruciate ligaments in arthritic knees: a histologic study with radiologic correlation. J Arthroplasty 23:567–572

    Article  PubMed  Google Scholar 

  40. Krakenes J, Kaale BR, Rorvik J, Gilhus NE (2001) MRI assessment of normal ligamentous structures in the craniovertebral junction. Neuroradiology 43:1089–1097

    Article  PubMed  CAS  Google Scholar 

  41. Roy S, Hol PK, Laerum LT, Tillung T (2004) Pitfalls of magnetic resonance imaging of alar ligament. Neuroradiology 46:392–398

    Article  PubMed  Google Scholar 

  42. Kaale BR, Krakenes J, Albrektsen G, Wester K (2008) Clinical assessment techniques for detecting ligament and membrane injuries in the upper cervical spine region—a comparison with MRI results. Man Ther 13:397–403

    Article  PubMed  Google Scholar 

  43. Vetti N, Krakenes J, Eide GE, Rorvik J, Gilhus NE, Espeland A (2010) Are MRI high-signal changes of alar and transverse ligaments in acute whiplash injury related to outcome? BMC musculoskeletal disorders 11:260

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Li.

Appendix: Search terms

Appendix: Search terms

PUBMED

((((“Ligaments” [Mesh] OR “Ligaments, Articular” [Mesh]) OR ligament*) AND (alar OR transverse)) OR (craniovertebral OR craniocervical OR (Atlanto*Occipital) OR cervical* OR neck)) AND (MRI OR (Magnetic Resonance) OR (“Magnetic Resonance Imaging” [Mesh])) AND ((whiplash) OR (“Whiplash Injurie” [Mesh]))

EMBASE

craniovertebral OR craniocervical OR cervical* OR ‘neck’/exp OR neck OR atlanto*occipital OR ‘cervical spine’/exp OR (‘alar’/exp OR alar OR transverse AND (‘ligament’/exp OR ‘ligament’ OR ligament*)) AND (‘mri’/exp OR mri OR (magnetic AND resonance AND (‘imaging’/exp OR imaging))) AND (‘whiplash injury’/exp OR whiplash)

Cochrane library

(ligament* OR craniovertebral OR craniocervical OR (cervical spine) OR neck OR (Cervical Vertebrae) OR (Atlanto*Occipital)) AND (MRI OR (Magnetic Resonance Imaging)) AND whiplash

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Shen, H. & Li, M. Magnetic resonance imaging signal changes of alar and transverse ligaments not correlated with whiplash-associated disorders. Eur Spine J 22, 14–20 (2013). https://doi.org/10.1007/s00586-012-2490-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-012-2490-x

Keywords

Navigation