Skip to main content

Advertisement

Log in

Impaired cognition preceding cardiac surgery is related to cerebral ischemic lesions

  • Original Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Purpose

Cognitive dysfunction is more frequent after cardiac surgery. However, the preoperative cognitive state is seldom assessed when the effects of cardiac surgery on cognition are investigated. Postoperative cognitive dysfunction may be associated with the preoperative cognitive state and the existence of cerebral ischemic lesions in patients who undergo cardiac surgery.

Methods

Data were collected prospectively on 362 consecutive patients scheduled to undergo elective cardiac surgery. The brains of all patients were imaged by magnetic resonance imaging (MRI) to assess prior cerebral infarctions, carotid artery stenosis and intracranial arterial stenosis, and diffusion-weighted imaging (DWI) was used to assess acute cerebral ischemia. Patients were classified with impaired cognitive function prior to surgery if their score on the Hasegawa dementia rating scale was <24. Postoperative cognitive dysfunction from baseline was determined using four neuropsychological tests.

Results

Prior to surgery 40 patients (11%) were assessed with impaired cognition. Relative to the other patients, these patients were older and less well educated, and they had significantly higher rates of peripheral vascular disease, white matter lesions, cerebral infarction on MRI, carotid artery stenosis and postoperative cognitive dysfunction. Of these 40 cognitively impaired patients, seven (18%) had cerebral ischemia, based on DWI images before surgery; in comparison, nine of the 322 patients (3%) without preoperative cognitive impairment were found to have abnormalities on the DWI images (P < 0.001). An analysis by stepwise logistic regression demonstrated that the significant risks for preoperative cognitive impairment were advanced age, lower attained level of education, peripheral artery disease, prior cerebral infarctions, and abnormalities on DWI images.

Conclusions

These findings suggest that preoperative cognitive impairment associated with cerebral ischemic lesions and an increased risk of postoperative cognitive dysfunction existed in our patient cohort undergoing cardiac surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Shaw PJ, Bates D, Cartlidge NE, French JM, Heaviside D, Julian DG, Shaw DA. Neurologic and neuropsychological morbidity following major surgery: comparison of coronary artery bypass and peripheral vascular surgery. Stroke. 1987;18:700–7.

    PubMed  CAS  Google Scholar 

  2. Roach GW, Kanchuger M, Mangano CM, Newman M, Nussmeier N, Wolman R, Aggarwal A, Marschall K, Graham SH, Ley C. Adverse cerebral outcomes after coronary bypass surgery. Multicenter Study of Perioperative Ischemia Research Group and the Ischemia Research and Education Foundation Investigators. N Engl J Med. 1996;335:1857–63.

    Article  PubMed  CAS  Google Scholar 

  3. Newman MF, Kirchner JL, Phillips-Bute B, Gaver V, Grocott H, Jones RH, Mark DB, Reves JG, Blumenthal JA, Neurological Outcome Research Group and the Cardiothoracic Anesthesiology Research Endeavors Investigators. Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery. N Engl J Med. 2001;344:395–402.

    Article  PubMed  CAS  Google Scholar 

  4. Swan GE, Carmelli D, Larue A. Systolic blood pressure tracking over 25 to 30 years and cognitive performance in older adults. Stroke. 1998;29:2334–40.

    PubMed  CAS  Google Scholar 

  5. Elias PK, Elias MF, D’Agostino RB, Cupples LA, Wilson PW, Silbershatz H, Wolf PA. NIDDM and blood pressure as risk factors for poor cognitive performance. The Framingham Study. Diabetes Care. 1997;20:1388–95.

    Article  PubMed  CAS  Google Scholar 

  6. Kivipelto M, Helkala EL, Hänninen T, Laakso MP, Hallikainen M, Alhainen K, Soininen H, Tuomilehto J, Nissinen A. Midlife vascular risk factors and late-life mild cognitive impairment: a population-based study. Neurology. 2001;56:1683–9.

    PubMed  CAS  Google Scholar 

  7. Phillips NA, Mate-Kole CC. Cognitive deficits in peripheral vascular disease. A comparison of mild stroke patients and normal control subjects. Stroke. 1997;28:777–84.

    PubMed  CAS  Google Scholar 

  8. Maekawa K, Goto T, Baba T, Yoshitake A, Morishita S, Koshiji T. Abnormalities in the brain before elective cardiac surgery detected by diffusion-weighted magnetic resonance imaging. Ann Thorac Surg. 2008;86:1563–9.

    Article  PubMed  Google Scholar 

  9. Vermeer SE, Prins ND, den Heijer T, Hofman A, Koudstaal PJ, Breteler MM. Silent brain infarcts and the risk of dementia and cognitive decline. N Engl J Med. 2003;348:1215–22.

    Article  PubMed  Google Scholar 

  10. Jensen BO, Hughes P, Rasmussen LS, Pedersen PU, Steinbrüchel DA. Cognitive outcomes in elderly high-risk patients after off-pump versus conventional coronary artery bypass grafting: a randomized trial. Circulation. 2006;113:2790–5.

    Article  PubMed  Google Scholar 

  11. Kato S, Shimogami H, Onodera A, Okita K, Ikeda K, Kosaka A, Imai Y, Hasegawa K. Development of the revised version of Hasegawa’s dementia scale. Rounen Seisin Igaku Zashi (Jpn J Geriatr Psychiatry). 1991;2:1339–47 (in Japanese).

  12. Heiserman JE, Drayer BP, Keller PJ, Fram EK. Intracranial vascular stenosis and occlusion: evaluation with three-dimensional time-of-flight MR angiography. Radiology. 1992;185:667–73.

    PubMed  CAS  Google Scholar 

  13. Atlas SW. MR angiography in neurologic disease. Radiology. 1994;193:1–16.

    PubMed  CAS  Google Scholar 

  14. Masaryk TJ, Lewin JS, Laub G. Magnetic resonance angiography. In: Stark DD, Bradley WG, editors. Magnetic resonance imaging. 2nd ed. St. Louis: Mosby Year Book; 1992. p. 299–334.

  15. Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol. 1987;149:351–6.

    PubMed  CAS  Google Scholar 

  16. Goto T, Baba T, Honma K, Shibata Y, Arai Y, Uozumi H, Okuda T. Magnetic resonance imaging findings and postoperative neurologic dysfunction in elderly patients undergoing coronary artery bypass grafting. Ann Thorac Surg. 2001;72:137–42.

    Article  PubMed  CAS  Google Scholar 

  17. Goto T, Baba T, Matsuyama K, Honma K, Ura M, Koshiji T. Aortic atherosclerosis and postoperative neurological dysfunction in elderly coronary surgical patients. Ann Thorac Surg. 2003;75:1912–8.

    Article  PubMed  Google Scholar 

  18. Selnes OA, Grega MA, Bailey MM, Pham LD, Zeger SL, Baumgartner WA, McKhann GM. Do management strategies for coronary artery disease influence 6-year cognitive outcomes? Ann Thorac Surg. 2009;88:445–54.

    Article  PubMed  Google Scholar 

  19. Millar K, Asbury AJ, Murray GD. Pre-existing cognitive impairment as a factor influencing outcome after cardiac surgery. Br J Anaesth. 2001;86:63–7.

    Article  PubMed  CAS  Google Scholar 

  20. Evered LA, Silbert BS, Scott DA, Maruff P, Laughton KM, Volitakis I, Cowie T, Cherny RA, Masters CL, Li QX. Plasma amyloid beta42 and amyloid beta40 levels are associated with early cognitive dysfunction after cardiac surgery. Ann Thorac Surg. 2009;88:1426–32.

    Article  PubMed  Google Scholar 

  21. Hogue CW Jr, Hershey T, Dixon D, Fucetola R, Nassief A, Freedland KE, Thomas B, Schechtman K. Preexisting cognitive impairment in women before cardiac surgery and its relationship with C-reactive protein concentrations. Anesth Analg. 2006;102:1602–8.

    Article  PubMed  CAS  Google Scholar 

  22. Katzman R. Education and the prevalence of dementia and Alzheimer’s disease. Neurology. 1993;43:13–20.

    PubMed  CAS  Google Scholar 

  23. Stern Y, Gurland B, Tatemichi TK, Tang MX, Wilder D, Mayeux R. Influence of education and occupation on the incidence of Alzheimer’s disease. JAMA. 1994;271:1004–10.

    Article  PubMed  CAS  Google Scholar 

  24. Tomimoto H, Ihara M, Wakita H, Ohtani R, Lin JX, Akiguchi I, Kinoshita M, Shibasaki H. Chronic cerebral hypoperfusion induces white matter lesions and loss of oligodendroglia with DNA fragmentation in the rat. Acta Neuropathol. 2003;106:527–34.

    Article  PubMed  CAS  Google Scholar 

  25. Gunning-Dixon FM, Raz N. The cognitive correlates of white matter abnormalities in normal aging: a quantitative review. Neuropsychology. 2000;14:224–32.

    Article  PubMed  CAS  Google Scholar 

  26. Schneider JA, Wilson RS, Cochran EJ, Bienias JL, Arnold SE, Evans DA, Bennett DA. Relation of cerebral infarctions to dementia and cognitive function in older persons. Neurology. 2003;60:1082–8.

    PubMed  CAS  Google Scholar 

  27. Restrepo L, Wityk RJ, Grega MA, Borowicz L Jr, Barker PB, Jacobs MA, Beauchamp NJ, Hillis AE, McKhann GM. Diffusion- and perfusion-weighted magnetic resonance imaging of the brain before and after coronary artery bypass grafting surgery. Stroke. 2002;33:2909–15.

    Article  PubMed  Google Scholar 

  28. Barber PA, Hach S, Tippett LJ, Ross L, Merry AF, Milsom P. Cerebral ischemic lesions on diffusion-weighted imaging are associated with neurocognitive decline after cardiac surgery. Stroke. 2008;39:1427–33.

    Article  PubMed  CAS  Google Scholar 

  29. Knipp SC, Matatko N, Wilhelm H, Schlamann M, Thielmann M, Lösch C, Diener HC, Jakob H. Cognitive outcomes three years after coronary artery bypass surgery: relation to diffusion-weighted magnetic resonance imaging. Ann Thorac Surg. 2008;85:872–9.

    Article  PubMed  Google Scholar 

  30. Stolz E, Gerriets T, Kluge A, Klovekorn WP, Kaps M, Bachmann G. Diffusion-weighted magnetic resonance imaging and neurobiochemical markers after aortic valve replacement: implications for future neuroprotective trials? Stroke. 2004;35:888–92.

    Article  PubMed  Google Scholar 

  31. Cook DJ, Huston J 3rd, Trenerry MR, Brown RD Jr, Zehr KJ, Sundt TM 3rd. Postcardiac surgical cognitive impairment in the aged using diffusion-weighted magnetic resonance imaging. Ann Thorac Surg. 2007;83:1389–95.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Jon Moon for his editorial assistance and Dr. Akira Kitagawa for his statistical assistance.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kengo Maekawa.

About this article

Cite this article

Maekawa, K., Goto, T., Baba, T. et al. Impaired cognition preceding cardiac surgery is related to cerebral ischemic lesions. J Anesth 25, 330–336 (2011). https://doi.org/10.1007/s00540-011-1108-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-011-1108-5

Keywords

Navigation