Skip to main content

Advertisement

Log in

Methods of assessing renal function

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Accurate assessment of renal function is critical for appropriate drug dosing of renally excreted compounds. Glomerular filtration rate (GFR) is considered the best marker of kidney function. Inulin clearance forms the gold standard for measuring GFR, both in adults and in children. The method is invasive, cumbersome, and smaller children require urinary catheterization for accurate timed urine collections. Nuclear medicine methods replaced inulin clearance in the 1970s after 51Cr EDTA clearance was introduced. Inulin has no plasma protein binding, whereas all commonly used radioisotopes have a small amount of plasma protein binding that leads to lower values. Only iohexol does not have significant plasma protein binding. The underestimation due to plasma protein binding is partially offset by overestimation due to the use of non-compartmental pharmacokinetic modeling of the plasma disappearance of the radioisotope. The problem could be overcome with a urinary nuclear medicine clearance method, but these have not been validated in children. Endogenous markers of GFR include serum creatinine and low molecular weight proteins such as cystatin C and beta-trace protein. Of these, estimation of GFR using cystatin C appears to be the most promising, although its accuracy in pregnancy and in the neonatal period may be limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Filler GM (2011) The challenges of assessing acute kidney injury in infants. Kidney Int 80:567–568

    Article  PubMed  Google Scholar 

  2. Pedersen M, Karstoft K, Lodrup A, Jespersen B, Nyengaard JR (2011) Advantages and controversies in the era of intrarenal volumetry. Am J Nephrol 33(Suppl 1):40–45

    Article  PubMed  Google Scholar 

  3. Cataldi L, Mussap M, Bertelli L, Ruzzante N, Fanos V, Plebani M (1999) Cystatin C in healthy women at term pregnancy and in their infant newborns: relationship between maternal and neonatal serum levels and reference values. Am J Perinatol 16:287–295

    Article  CAS  PubMed  Google Scholar 

  4. Abbink FC, Laarman CA, Braam KI, van Wijk JA, Kors WA, Bouman AA, Spreeuwenberg MD, Stoffel-Wagner B, Bokenkamp A (2008) Beta-trace protein is not superior to cystatin C for the estimation of GFR in patients receiving corticosteroids. Clin Biochem 41:299–305

    Article  CAS  PubMed  Google Scholar 

  5. Herget-Rosenthal S, Bokenkamp A, Hofmann W (2007) How to estimate GFR-serum creatinine, serum cystatin C or equations? Clin Biochem 40:153–161

    Article  CAS  PubMed  Google Scholar 

  6. Bokenkamp A, Herget-Rosenthal S, Bokenkamp R (2006) Cystatin C, kidney function and cardiovascular disease. Pediatr Nephrol 21:1223–1230

    Article  PubMed  Google Scholar 

  7. Beck M, Graf C, Ellenrieder B, Bokenkamp A, Huber A, Hecher K, Bartmann P (2005) Long-term outcome of kidney function after twin-twin transfusion syndrome treated by intrauterine laser coagulation. Pediatr Nephrol 20:1657–1659

    Article  CAS  PubMed  Google Scholar 

  8. Kort SA, Bouman AA, Blankenstein MA, Bokenkamp A (2005) Cystatin C can be measured reliably in capillary blood samples. Clin Chem 51:903–904

    Article  CAS  PubMed  Google Scholar 

  9. Huang SH, Sharma AP, Yasin A, Lindsay RM, Clark WF, Filler G (2011) Hyperfiltration affects accuracy of creatinine eGFR measurement. Clin J Am Soc Nephrol 6:274–280

    Article  PubMed  Google Scholar 

  10. Bokenkamp A (2005) Kidney function itself, and not cystatin C, is correlated with height and weight. Kidney Int 67:777–778, author reply 778–779

    Article  PubMed  Google Scholar 

  11. Filler G, Browne R, Seikaly MG (2003) Glomerular filtration rate as a putative ‘surrogate end-point’ for renal transplant clinical trials in children. Pediatr Transplant 7:18–24

    Article  PubMed  Google Scholar 

  12. Filler G, Bokenkamp A, Hofmann W, Le Bricon T, Martinez-Bru C, Grubb A (2005) Cystatin C as a marker of GFR–history, indications, and future research. Clin Biochem 38:1–8

    Article  CAS  PubMed  Google Scholar 

  13. Filler G, Huang SH, Yasin A (2012) The usefulness of cystatin C and related formulae in pediatrics. Clin Chem Lab Med. doi:10.1515/cclm-2012-0257

  14. Bokenkamp A, Grabensee A, Stoffel-Wagner B, Hasan C, Henne T, Offner G, Lentze MJ (2002) The beta2-microglobulin/cystatin C ratio–a potential marker of post-transplant lymphoproliferative disease. Clin Nephrol 58:417–422

    CAS  PubMed  Google Scholar 

  15. Poge U, Gerhardt T, Bokenkamp A, Stoffel-Wagner B, Klehr HU, Sauerbruch T, Woitas RP (2004) Time course of low molecular weight proteins in the early kidney transplantation period–influence of corticosteroids. Nephrol Dial Transplant 19:2858–2863

    Article  PubMed  Google Scholar 

  16. Miller BF, Leaf A, Mamby AR, Miller Z (1952) Validity of the endogenous creatinine clearance as a measure of glomerular filtration rate in the diseased human kidney. J Clin Invest 31:309–313

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Bokenkamp A, van Wijk JA, Lentze MJ, Stoffel-Wagner B (2002) Effect of corticosteroid therapy on serum cystatin C and beta2-microglobulin concentrations. Clin Chem 48:1123–1126

    CAS  PubMed  Google Scholar 

  18. Bokenkamp A, Herget-Rosenthal S (2004) Urinary cystatin C as a marker of GFR? A word of caution. Pediatr Nephrol 19:1429

    Article  PubMed  Google Scholar 

  19. Bokenkamp A, Ozden N, Dieterich C, Schumann G, Ehrich JH, Brodehl J (1999) Cystatin C and creatinine after successful kidney transplantation in children. Clin Nephrol 52:371–376

    CAS  PubMed  Google Scholar 

  20. Bokenkamp A, Domanetzki M, Zinck R, Schumann G, Byrd D, Brodehl J (1998) Cystatin C–a new marker of glomerular filtration rate in children independent of age and height. Pediatrics 101:875–881

    Article  CAS  PubMed  Google Scholar 

  21. Bokenkamp A, Ciarimboli G, Dieterich C (2001) Cystatin C in a rat model of end-stage renal failure. Ren Fail 23:431–438

    Article  CAS  PubMed  Google Scholar 

  22. Enger C, Gately R, Ming EE, Niemcryk SJ, Williams L, McAfee AT (2010) Pharmacoepidemiology safety study of fibrate and statin concomitant therapy. Am J Cardiol 106:1594–1601

    Article  CAS  PubMed  Google Scholar 

  23. Filler G, Sharma AP (2008) How to monitor renal function in pediatric solid organ transplant recipients. Pediatr Transplant 12:393–401

    Article  PubMed  Google Scholar 

  24. Odlind B, Hallgren R, Sohtell M, Lindstrom B (1985) Is 125I iothalamate an ideal marker for glomerular filtration? Kidney Int 27:9–16

    Article  CAS  PubMed  Google Scholar 

  25. Bertholet-Thomas A, Ranchin B, King LA, Bacchetta J, Belot A, Gillet Y, Collardeau-Frachon S, Cochat P (2011) Post-diarrheal haemolytic uremic syndrome: when shall we consider it? Which follow-up? Arch Pediatr 18:823–830

    Article  CAS  PubMed  Google Scholar 

  26. Rehling M, Nielsen LE, Marqversen J (2001) Protein binding of 99Tcm-DTPA compared with other GFR tracers. Nucl Med Commun 22:617–623

    Article  CAS  PubMed  Google Scholar 

  27. Rehling M, Moller ML, Thamdrup B, Lund JO, Trap-Jensen J (1984) Simultaneous measurement of renal clearance and plasma clearance of 99mTc-labelled diethylenetriaminepenta-acetate, 51Cr-labelled ethylenediaminetetra-acetate and inulin in man. Clin Sci (Lond) 66:613–619

    CAS  Google Scholar 

  28. Peters AM (2004) The kinetic basis of glomerular filtration rate measurement and new concepts of indexation to body size. Eur J Nucl Med Mol Imaging 31:137–149

    Article  CAS  PubMed  Google Scholar 

  29. Schwartz GJ, Munoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth SL (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20:629–637

    Article  PubMed  Google Scholar 

  30. Stevens LA, Levey AS (2009) Measured GFR as a confirmatory test for estimated GFR. J Am Soc Nephrol 20:2305–2313

    Article  PubMed  Google Scholar 

  31. Assadi M, Eftekhari M, Hozhabrosadati M, Saghari M, Ebrahimi A, Nabipour I, Abbasi MZ, Moshtaghi D, Abbaszadeh M, Assadi S (2008) Comparison of methods for determination of glomerular filtration rate: low and high-dose Tc-99m-DTPA renography, predicted creatinine clearance method, and plasma sample method. Int Urol Nephrol 40:1059–1065

    Article  CAS  PubMed  Google Scholar 

  32. Russell CD, Bischoff PG, Kontzen FN, Rowell KL, Yester MV, Lloyd LK, Tauxe WN, Dubovsky EV (1985) Measurement of glomerular filtration rate: single injection plasma clearance method without urine collection. J Nucl Med 26:1243–1247

    CAS  PubMed  Google Scholar 

  33. Itoh K (2003) Comparison of methods for determination of glomerular filtration rate: Tc-99m-DTPA renography, predicted creatinine clearance method and plasma sample method. Ann Nucl Med 17:561–565

    Article  PubMed  Google Scholar 

  34. LaFrance ND, Drew HH, Walser M (1988) Radioisotopic measurement of glomerular filtration rate in severe chronic renal failure. J Nucl Med 29:1927–1930

    CAS  PubMed  Google Scholar 

  35. Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, Kusek JW, Van Lente F (2006) Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med 145:247–254

    Article  CAS  PubMed  Google Scholar 

  36. Tofts PS, Cutajar M, Mendichovszky IA, Peters AM, Gordon I (2012) Precise measurement of renal filtration and vascular parameters using a two-compartment model for dynamic contrast-enhanced MRI of the kidney gives realistic normal values. Eur Radiol 22:1320–1330

    Article  PubMed  Google Scholar 

  37. Michaely HJ, Metzger L, Haneder S, Hansmann J, Schoenberg SO, Attenberger UI (2012) Renal BOLD-MRI does not reflect renal function in chronic kidney disease. Kidney Int 81:684–689

    Article  CAS  PubMed  Google Scholar 

  38. Celik S, Doesch A, Erbel C, Blessing E, Ammon K, Koch A, Katus HA, Dengler TJ (2008) Beneficial effect of omega-3 fatty acids on sirolimus- or everolimus-induced hypertriglyceridemia in heart transplant recipients. Transplantation 86:245–250

    Article  CAS  PubMed  Google Scholar 

  39. Filler G, Lepage N (2003) Should the Schwartz formula for estimation of GFR be replaced by cystatin C formula? Pediatr Nephrol 18:981–985

    Article  PubMed  Google Scholar 

  40. Filler G, Liu D, Sharma AP, Grimmer J (2012) Are fibroblast growth factor 23 concentrations in renal transplant patients different from non-transplanted chronic kidney disease patients? Pediatr Transplant 16:73–77

    Article  CAS  PubMed  Google Scholar 

  41. Schwartz GJ, Brion LP, Spitzer A (1987) The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children, and adolescents. Pediatr Clin North Am 34:571–590

    CAS  PubMed  Google Scholar 

  42. Schwartz GJ, Gauthier B (1985) A simple estimate of glomerular filtration rate in adolescent boys. J Pediatr 106:522–526

    Article  CAS  PubMed  Google Scholar 

  43. Schwartz GJ, Haycock GB, Edelmann CM Jr, Spitzer A (1976) A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics 58:259–263

    CAS  PubMed  Google Scholar 

  44. Schwartz GJ, Schneider MF, Maier PS, Moxey-Mims M, Dharnidharka VR, Warady BA, Furth SL, Munoz A (2012) Improved equations estimating GFR in children with chronic kidney disease using an immunonephelometric determination of cystatin C. Kidney Int 82:445–453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Filler G (2011) Challenges in pediatric transplantation: the impact of chronic kidney disease and cardiovascular risk factors on long-term outcomes and recommended management strategies. Pediatr Transplant 15:25–31

    Article  PubMed  Google Scholar 

  46. Popper H, Mandel E (1937) Filiations- und reabsorptionsleitung in der nierenpathologie. Ergeb Inn Med Kinderheilkd 53:685–694

    Google Scholar 

  47. Thomas L, Huber AR (2006) Renal function–estimation of glomerular filtration rate. Clin Chem Lab Med 44:1295–1302

    Article  CAS  PubMed  Google Scholar 

  48. Heymsfield SB, Arteaga C, McManus C, Smith J, Moffitt S (1983) Measurement of muscle mass in humans: validity of the 24-h urinary creatinine method. Am J Clin Nutr 37:478–494

    CAS  PubMed  Google Scholar 

  49. Vinge E, Lindergard B, Nilsson-Ehle P, Grubb A (1999) Relationships among serum cystatin C, serum creatinine, lean tissue mass and glomerular filtration rate in healthy adults. Scand J Clin Lab Invest 59:587–592

    Article  CAS  PubMed  Google Scholar 

  50. Pham-Huy A, Leonard M, Lepage N, Halton J, Filler G (2003) Measuring Glomerular Filtration Rate with Cystatin C and [beta]-Trace Protein in Children with Spina Bifida. J Urol 169:2312–2315

    Article  CAS  PubMed  Google Scholar 

  51. Gerhardt T, Poge U, Stoffel-Wagner B, Palmedo H, Sauerbruch T, Woitas RP (2011) Creatinine-based glomerular filtration rate estimation in patients with liver disease: the new Chronic Kidney Disease Epidemiology Collaboration equation is not better. Eur J Gastroenterol Hepatol 23:969–973

    Article  CAS  PubMed  Google Scholar 

  52. Fitch CD, Sinton DW (1964) A study of creatine metabolism in diseases causing muscle wasting. J Clin Invest 43:444–452

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Shannon JA (1935) The renal excretion of creatinine in man. J Clin Invest 14:403–410

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Shemesh O, Golbetz H, Kriss JP, Myers BD (1985) Limitations of creatinine as a filtration marker in glomerulopathic patients. Kidney Int 28:830–838

    Article  CAS  PubMed  Google Scholar 

  55. Arant BS Jr (1984) Estimating glomerular filtration rate in infants. J Pediatr 104:890–893

    Article  PubMed  Google Scholar 

  56. (1995) Proficiency Testing Survey, Creatinine. Northfield Il: College of American Pathologists:29–30

  57. Ceriotti F, Boyd JC, Klein G, Henny J, Queralto J, Kairisto V, Panteghini M (2008) Reference intervals for serum creatinine concentrations: assessment of available data for global application. Clin Chem 54:559–566

    Article  CAS  PubMed  Google Scholar 

  58. Delanghe JR, Cobbaert C, Harmoinen A, Jansen R, Laitinen P, Panteghini M (2011) Focusing on the clinical impact of standardization of creatinine measurements: a report by the EFCC Working Group on Creatinine Standardization. Clin Chem Lab Med 49:977–982

    Article  CAS  PubMed  Google Scholar 

  59. Cobbaert CM, Baadenhuijsen H, Weykamp CW (2009) Prime time for enzymatic creatinine methods in pediatrics. Clin Chem 55:549–558

    Article  CAS  PubMed  Google Scholar 

  60. Olsen NV, Ladefoged SD, Feldt-Rasmussen B, Fogh-Andersen N, Jordening H, Munck O (1989) The effects of cimetidine on creatinine excretion, glomerular filtration rate and tubular function in renal transplant recipients. Scand J Clin Lab Invest 49:155–159

    Article  CAS  PubMed  Google Scholar 

  61. Hellerstein S, Erwin P, Warady BA (2003) The cimetidine protocol: a convenient, accurate, and inexpensive way to measure glomerular filtration rate. Pediatr Nephrol 18:71–72

    Article  PubMed  Google Scholar 

  62. Filler G (2006) How to measure renal function in children - What is the role of cystatin C? Curr Pediatr Rev 2:225–231

    Article  CAS  Google Scholar 

  63. Jung K (1987) Low-molecular-mass proteins in serum and their relationship to the glomerular filtration rate. Nephron 47:160

    Article  CAS  PubMed  Google Scholar 

  64. Filler G, Priem F, Lepage N, Sinha P, Vollmer I, Clark H, Keely E, Matzinger M, Akbari A, Althaus H, Jung K (2002) Beta-trace protein, cystatin C, beta(2)-microglobulin, and creatinine compared for detecting impaired glomerular filtration rates in children. Clin Chem 48:729–736

    CAS  PubMed  Google Scholar 

  65. Revillard JP, Vincent C, Clot J, Sany J (1982) beta 2-Microglobulin and beta 2-microglobulin-binding proteins in inflammatory diseases. Eur J Rheumatol Inflamm 5:398–405

    CAS  PubMed  Google Scholar 

  66. Trnka P, Hiatt MJ, Tarantal AF, Matsell DG (2012) Congenital urinary tract obstruction: defining markers of developmental kidney injury. Pediatr Res 72:446–454

    Article  PubMed  Google Scholar 

  67. Dharnidharka VR, Kwon C, Stevens G (2002) Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis 40:221–226

    Article  CAS  PubMed  Google Scholar 

  68. Grubb AO (2000) Cystatin C–properties and use as diagnostic marker. Adv Clin Chem 35:63–99

    Article  CAS  PubMed  Google Scholar 

  69. Jungers P, Skhiri H, Zingraff J, Muller S, Fumeron C, Giatras I, Touam M, Nguyen AT, Man NK, Grunfeld JP (1997) Benefits of early nephrological management in chronic renal failure. Presse Med 26:1325–1329

    CAS  PubMed  Google Scholar 

  70. Foster J, Reisman W, Lepage N, Filler G (2006) Influence of commonly used drugs on the accuracy of cystatin C-derived glomerular filtration rate. Pediatr Nephrol 21:235–238

    Article  PubMed  Google Scholar 

  71. Stevens LA, Schmid CH, Greene T, Li L, Beck GJ, Joffe MM, Froissart M, Kusek JW, Zhang YL, Coresh J, Levey AS (2009) Factors other than glomerular filtration rate affect serum cystatin C levels. Kidney Int 75:652–660

    Article  CAS  PubMed  Google Scholar 

  72. Al-Malki N, Heidenheim PA, Filler G, Yasin A, Lindsay RM (2009) Cystatin C levels in functionally anephric patients undergoing dialysis: the effect of different methods and intensities. Clin J Am Soc Nephrol 4:1606–1610

    Article  CAS  PubMed  Google Scholar 

  73. Huang SH, Filler G, Yasin A, Lindsay RM (2011) Cystatin C reduction ratio depends on normalized blood liters processed and fluid removal during hemodialysis. Clin J Am Soc Nephrol 6:319–325

    Article  CAS  PubMed  Google Scholar 

  74. Galteau MM, Guyon M, Gueguen R, Siest G (2001) Determination of serum cystatin C: biological variation and reference values. Clin Chem Lab Med 39:850–857

    Article  CAS  PubMed  Google Scholar 

  75. Hannemann A, Friedrich N, Dittmann K, Spielhagen C, Wallaschofski H, Völzke H, Rettig R, Endlich K, Lendeckel U, Stracke S, Nauck M (2011) Age- and sex-specific reference limits for creatinine, cystatin C and the estimated glomerular filtration rate. Clin Chem Lab Med 50:919–926

    PubMed  Google Scholar 

  76. Grubb A, Simonsen O, Sturfelt G, Truedsson L, Thysell H (1985) Serum concentration of cystatin C, factor D and beta 2-microglobulin as a measure of glomerular filtration rate. Acta Med Scand 218:499–503

    Article  CAS  PubMed  Google Scholar 

  77. Tenstad O, Roald AB, Grubb A, Aukland K (1996) Renal handling of radiolabelled human cystatin C in the rat. Scand J Clin Lab Invest 56:409–414

    Article  CAS  PubMed  Google Scholar 

  78. Filler G, Priem F, Vollmer I, Gellermann J, Jung K (1999) Diagnostic sensitivity of serum cystatin for impaired glomerular filtration rate. Pediatr Nephrol 13:501–505

    Article  CAS  PubMed  Google Scholar 

  79. Sharma AP, Kathiravelu A, Nadarajah R, Yasin A, Filler G (2009) Body mass does not have a clinically relevant effect on cystatin C eGFR in children. Nephrol Dial Transplant 24:470–474

    Article  CAS  PubMed  Google Scholar 

  80. Kyhse-Andersen J, Schmidt C, Nordin G, Andersson B, Nilsson-Ehle P, Lindstrom V, Grubb A (1994) Serum cystatin C, determined by a rapid, automated particle-enhanced turbidimetric method, is a better marker than serum creatinine for glomerular filtration rate. Clin Chem 40:1921–1926

    CAS  PubMed  Google Scholar 

  81. Roos JF, Doust J, Tett SE, Kirkpatrick CM (2007) Diagnostic accuracy of cystatin C compared to serum creatinine for the estimation of renal dysfunction in adults and children–a meta-analysis. Clin Biochem 40:383–391

    Article  CAS  PubMed  Google Scholar 

  82. Bariciak E, Abeeryasin HJ, Walker M, Lepage N, Filler G (2011) Preliminary reference intervals for cystatin C and beta-trace protein in preterm and term neonates. Clin Biochem 44:1156–1159

    Article  CAS  PubMed  Google Scholar 

  83. Harmoinen A, Ylinen E, Ala-Houhala M, Janas M, Kaila M, Kouri T (2000) Reference intervals for cystatin C in pre- and full-term infants and children. Pediatr Nephrol 15:105–108

    Article  CAS  PubMed  Google Scholar 

  84. Grubb A, Blirup-Jensen S, Lindstrom V, Schmidt C, Althaus H, Zegers I (2010) First certified reference material for cystatin C in human serum ERM-DA471/IFCC. Clin Chem Lab Med 48:1619–1621

    Article  CAS  PubMed  Google Scholar 

  85. Harrington MG, Aebersold R, Martin BM, Merril CR, Hood L (1993) Identification of a brain-specific human cerebrospinal fluid glycoprotein, beta-trace protein. Appl Theor Electrophor 3:229–234

    CAS  PubMed  Google Scholar 

  86. Akbari A, Lepage N, Keely E, Clark HD, Jaffey J, MacKinnon M, Filler G (2005) Cystatin-C and beta trace protein as markers of renal function in pregnancy. BJOG 112:575–578

    Article  PubMed  Google Scholar 

  87. Filler G, Grimmer J, Huang SH, Bariciak E (2012) Cystatin C for the assessment of GFR in neonates with congenital renal anomalies. Nephrol Dial Transplant 27:3382–3384

    Article  CAS  PubMed  Google Scholar 

  88. White CA, Akbari A, Doucette S, Fergusson D, Hussain N, Dinh L, Filler G, Lepage N, Knoll GA (2009) Estimating GFR using serum beta trace protein: accuracy and validation in kidney transplant and pediatric populations. Kidney Int 76:784–791

    Article  CAS  PubMed  Google Scholar 

  89. Poge U, Gerhardt T, Stoffel-Wagner B, Palmedo H, Klehr HU, Sauerbruch T, Woitas RP (2008) Beta-trace protein-based equations for calculation of GFR in renal transplant recipients. Am J Transplant 8:608–615

    Article  CAS  PubMed  Google Scholar 

  90. White CA, Akbari A, Doucette S, Fergusson D, Hussain N, Dinh L, Filler G, Lepage N, Knoll GA (2007) A novel equation to estimate glomerular filtration rate using beta-trace protein. Clin Chem 53:1965–1968

    Article  CAS  PubMed  Google Scholar 

  91. Benlamri A, Nadarajah R, Yasin A, Lepage N, Sharma AP, Filler G (2010) Development of a beta-trace protein based formula for estimation of glomerular filtration rate. Pediatr Nephrol 25:485–490

    Article  PubMed  Google Scholar 

  92. Barbour GL, Crumb CK, Boyd CM, Reeves RD, Rastogi SP, Patterson RM (1976) Comparison of inulin, iothalamate, and 99mTc-DTPA for measurement of glomerular filtration rate. J Nucl Med 17:317–320

    CAS  PubMed  Google Scholar 

  93. Krutzen E, Back SE, Nilsson-Ehle P (1990) Determination of glomerular filtration rate using iohexol clearance and capillary sampling. Scand J Clin Lab Invest 50:279–283

    Article  CAS  PubMed  Google Scholar 

  94. Zhang P, Kim W, Zhou L, Wang N, Ly LH, McMurray DN, Chapkin RS (2006) Dietary fish oil inhibits antigen-specific murine Th1 cell development by suppression of clonal expansion. J Nutr 136:2391–2398

    CAS  PubMed  Google Scholar 

  95. Favre HR, Wing AJ (1968) Simultaneous 51Cr edetic acid, inulin, and endogenous creatinine clearances in 20 patients with renal disease. Br Med J 1:84–86

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Gaspari F, Perico N, Ruggenenti P, Mosconi L, Amuchastegui CS, Guerini E, Daina E, Remuzzi G (1995) Plasma clearance of nonradioactive iohexol as a measure of glomerular filtration rate. J Am Soc Nephrol 6:257–263

    CAS  PubMed  Google Scholar 

  97. Medeiros FS, Sapienza MT, Prado ES, Agena F, Shimizu MH, Lemos FB, Buchpiguel CA, Ianhez LE, David-Neto E (2009) Validation of plasma clearance of 51Cr-EDTA in adult renal transplant recipients: comparison with inulin renal clearance. Transpl Int 22:323–331

    Article  CAS  PubMed  Google Scholar 

  98. Hernandez Ocampo J, Torres Rosales A, Rodriguez Castellanos F (2010) Comparison of four methods for measuring glomerular filtration rate by inulin clearance in healthy individuals and patients with renal failure. Nefrologia 30:324–330

    CAS  PubMed  Google Scholar 

  99. Berg UB, Back R, Celsi G, Halling SE, Homberg I, Krmar RT, Monemi KA, Oborn H, Herthelius M (2011) Comparison of plasma clearance of iohexol and urinary clearance of inulin for measurement of GFR in children. Am J Kidney Dis 57:55–61

    Article  CAS  PubMed  Google Scholar 

Download references

Source of funding

None

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Filler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filler, G., Yasin, A. & Medeiros, M. Methods of assessing renal function. Pediatr Nephrol 29, 183–192 (2014). https://doi.org/10.1007/s00467-013-2426-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-013-2426-7

Keywords

Navigation