Skip to main content
Log in

The system neurophysiological basis of backward inhibition

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Task switching is regularly required in our everyday life. To succeed in switching, it is important to inhibit the most recently performed task and instead activate the currently relevant task. The process that inhibits a recently performed task when a new task is to be performed is referred to as ‘backward inhibition’ (BI). While the BI effect has been subject to intense research in cognitive psychology, little is known about the neuronal mechanisms that are related to the BI effect and those that relate to differences in the magnitude of the BI effect. In the current study, we examined the system neurophysiological basis of BI processes using event-related potentials (ERPs) and sLORETA by also taking inter-individual differences in the magnitude of the BI into account. The results suggest that BI processes and inter-individual differences in them strongly depend upon attentional selection mechanisms (reflected by N1-ERP modulations in the current task/trial) mediated via networks consisting of extrastriate occipital areas, the temporo-parietal junction and the inferior frontal gyrus. Other processes and mechanisms related to conflict monitoring, response selection, or the updating, organization and implementation of a new task-set (i.e. N2 and P3 processes) were not shown to be modulated by BI processes and differences in their magnitude, as evoked with a common BI paradigm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allport A, Wylie G (1999) Task-switching: positive and negative priming of task-set. In: Humphreys GW, Duncan J, Treisman AM (eds) Attention, space and action: studies in cognitive neuroscience. Oxford University Press, Oxford, pp 273–296

    Google Scholar 

  • Allport A, Styles EA, Hsieh S (1994) Shifting intentional set: exploring the dynamic control of task. In: Umiltà C, Moscovitch M (eds) Attention and performance XV: conscious and nonconscious information processing. MIT Press, Cambridge, pp 421–452

    Google Scholar 

  • Aron AR, Robbins TW, Poldrack RA (2004) Inhibition and the right inferior frontal cortex. Trends Cogn Sci 8:170–177

    Article  PubMed  Google Scholar 

  • Banich MT (1998) The missing link: the role of interhemispheric interaction in attentional processing. Brain Cognit 36(2):128–157. doi:10.1006/brcg.1997.0950

    Article  CAS  Google Scholar 

  • Barceló F, Muñoz-Céspedes JM, Pozo MA, Rubia FJ (2000) Attentional set shifting modulates the target P3b response in the Wisconsin card sorting test. Neuropsychologia 38(10):1342–1355

    Article  PubMed  Google Scholar 

  • Beste C, Saft C, Andrich J, Gold R, Falkenstein M (2008) Stimulus-response compatibility in Huntington’s disease: a cognitive-neurophysiological analysis. J Neurophysiol 99(3):1213–1223. doi:10.1152/jn.01152.2007

    Article  PubMed  Google Scholar 

  • Beste C, Baune BT, Falkenstein M, Konrad C (2010a) Variations in the TNF-α gene (TNF-α-308G→A) affect attention and action selection mechanisms in a dissociated fashion. J Neurophysiol 104(5):2523–2531. doi:10.1152/jn.00561.2010

    Article  CAS  PubMed  Google Scholar 

  • Beste C, Willemssen R, Saft C, Falkenstein M (2010b) Response inhibition subprocesses and dopaminergic pathways: basal ganglia disease effects. Neuropsychologia 48(2):366–373. doi:10.1016/j.neuropsychologia.2009.09.023

    Article  PubMed  Google Scholar 

  • Beste C, Ness V, Falkenstein M, Saft C (2011) On the role of fronto-striatal neural synchronization processes for response inhibition—evidence from ERP phase-synchronization analyses in pre-manifest Huntington’s disease gene mutation carriers. Neuropsychologia 49(12):3484–3493. doi:10.1016/j.neuropsychologia.2011.08.024

    Article  PubMed  Google Scholar 

  • Bokura H, Yamaguchi S, Kobayashi S (2001) Electrophysiological correlates for response inhibition in a Go/NoGo task. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 112(12):2224–2232

    Article  CAS  Google Scholar 

  • Cabeza R, Ciaramelli E, Moscovitch M (2012) Cognitive contributions of the ventral parietal cortex: an integrative theoretical account. Trends Cognit Sci 16(6):338–352. doi:10.1016/j.tics.2012.04.008

    Article  Google Scholar 

  • Costa RE, Friedrich FJ (2012) Inhibition, interference, and conflict in task switching. Psychon Bull Rev 19(6):1193–1201. doi:10.3758/s13423-012-0311-1

    Article  PubMed  Google Scholar 

  • Deng Y, Wang Y, Ding X, Tang Y-Y (2015) Conflict monitoring and adjustment in the task-switching paradigm under different memory load conditions: an ERP/sLORETA analysis. Neuroreport. doi:10.1097/WNR.0000000000000310

    PubMed  Google Scholar 

  • Dippel G, Beste C (2015) A causal role of the right inferior frontal cortex in the strategies of multi-component behaviour. Nature Commun. doi:10.1038/ncomms7587

    Google Scholar 

  • Donkers FCL, van Boxtel GJM (2004) The N2 in go/no-go tasks reflects conflict monitoring not response inhibition. Brain Cognit 56(2):165–176. doi:10.1016/j.bandc.2004.04.005

    Article  Google Scholar 

  • Dreher JC, Berman KF (2002) Fractionating the neural substrate of cognitive control processes. Proc Natl Acad Sci USA 99:14595–14600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Druey MD, Hübner R (2007) The role of temporal cue-target overlap in backward inhibition under task switching. Psychon Bull Rev 14(4):749–754

    Article  PubMed  Google Scholar 

  • Falkenstein M, Hohnsbein J, Hoormann J (1994a) Effects of choice complexity on different subcomponents of the late positive complex of the event-related potential. Electroencephalogr Clin Neurophysiol 92(2):148–160

    Article  CAS  PubMed  Google Scholar 

  • Falkenstein M, Hohnsbein J, Hoormann J (1994b) Time pressure effect on late components of the event-related potential (ERP). J Psychophysiol 8:22–30

    Google Scholar 

  • Fuchs M, Kastner J, Wagner M, Hawes S, Ebersole JS (2002) A standardized boundary element method volume conductor model. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 113(5):702–712

    Article  Google Scholar 

  • Gade M, Koch I (2008) Dissociating cue-related and task-related processes in task inhibition: evidence from using a 2:1 cue-to-task mapping. Can J Exp Psychol Revue Canadienne de Psychologie Expérimentale 62(1):51–55. doi:10.1037/1196-1961.62.1.51

    Article  PubMed  Google Scholar 

  • Gajewski PD, Wild-Wall N, Schapkin SA, Erdmann U, Freude G, Falkenstein M (2010) Effects of aging and job demands on cognitive flexibility assessed by task switching. Biol Psychol 85(2):187–199. doi:10.1016/j.biopsycho.2010.06.009

    Article  PubMed  Google Scholar 

  • Gajewski PD, Hengstler JG, Golka K, Falkenstein M, Beste C (2011) The Met-allele of the BDNF Val66Met polymorphism enhances task switching in elderly. Neurobiol Aging 32(12):2327.e7–19. doi:10.1016/j.neurobiolaging.2011.06.010

  • Gehring WJ, Bryck RL, Jonides J, Albin RL, Badre D (2003) The mind’s eye, looking inward? In search of executive control in internal attention shifting. Psychophysiology 40(4):572–585

    Article  PubMed  Google Scholar 

  • Geng JJ, Vossel S (2013) Re-evaluating the role of TPJ in attentional control: contextual updating? Neurosci Biobehav Rev 37(10, Part 2):2608–2620. doi:10.1016/j.neubiorev.2013.08.010

  • Getzmann S, Gajewski PD, Hengstler JG, Falkenstein M, Beste C (2013) BDNF Val66Met polymorphism and goal-directed behavior in healthy elderly—evidence from auditory distraction. NeuroImage 64:290–298. doi:10.1016/j.neuroimage.2012.08.079

    Article  CAS  PubMed  Google Scholar 

  • Goffaux P, Phillips NA, Sinai M, Pushkar D (2006) Behavioural and electrophysiological measures of task switching during single and mixed-task conditions. Biol Psychol 72(3):278–290. doi:10.1016/j.biopsycho.2005.11.009

    Article  PubMed  Google Scholar 

  • Herrmann CS, Knight RT (2001) Mechanisms of human attention: event-related potentials and oscillations. Neurosci Biobehav Rev 25(6):465–476

    Article  CAS  PubMed  Google Scholar 

  • Hillyard SA, Anllo-Vento L (1998) Event-related brain potentials in the study of visual selective attention. Proc Natl Acad Sci USA 95(3):781–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilti CC, Jann K, Heinemann D, Federspiel A, Dierks T, Seifritz E, Cattapan-Ludewig K (2013) Evidence for a cognitive control network for goal-directed attention in simple sustained attention. Brain Cognit 81(2):193–202. doi:10.1016/j.bandc.2012.10.013

    Article  Google Scholar 

  • Huster RJ, Enriquez-Geppert S, Lavallee CF, Falkenstein M, Herrmann CS (2013) Electroencephalography of response inhibition tasks: functional networks and cognitive contributions. Int J Psychophysiol 87(3):217–233. doi:10.1016/j.ijpsycho.2012.08.001

    Article  PubMed  Google Scholar 

  • Johnson JA, Zatorre RJ (2005) Attention to simultaneous unrelated auditory and visual events: behavioral and neural correlates. Cereb Cortex (New York, N.Y.: 1991) 15(10):1609–1620. doi:10.1093/cercor/bhi039

  • Karayanidis F, Coltheart M, Michie PT, Murphy K (2003) Electrophysiological correlates of anticipatory and poststimulus components of task switching. Psychophysiology 40(3):329–348

    Article  PubMed  Google Scholar 

  • Katzir M, Ori B, Hsieh S, Meiran N (2015) Competitor rule priming: evidence for priming of task rules in task switching. Psychol Res 79(3):446–462. doi:10.1007/s00426-014-0583-3

    Article  PubMed  Google Scholar 

  • Kieffaber PD, Hetrick WP (2005) Event-related potential correlates of task switching and switch costs. Psychophysiology 42(1):56–71. doi:10.1111/j.1469-8986.2005.00262.x

    Article  PubMed  Google Scholar 

  • Kiesel A, Steinhauser M, Wendt M, Falkenstein M, Jost K, Philipp AM, Koch I (2010) Control and interference in task switching—a review. Psychol Bull 136(5):849–874. doi:10.1037/a0019842

    Article  PubMed  Google Scholar 

  • Koch I, Gade M, Philipp AM (2004) Inhibition of response mode in task switching. Exp Psychol 51:52–58. doi:10.1027/1617-3169.51.1.52

    Article  PubMed  Google Scholar 

  • Koch I, Gade M, Schuch S, Philipp AM (2010) The role of inhibition in task switching: a review. Psychon Bull Rev 17(1):1–14. doi:10.3758/PBR.17.1.1

    Article  PubMed  Google Scholar 

  • Larson MJ, Clayson PE, Clawson A (2014) Making sense of all the conflict: a theoretical review and critique of conflict-related ERPs. Int J Psychophysiol Off J Int Org Psychophysiol 93(3):283–297. doi:10.1016/j.ijpsycho.2014.06.007

    Google Scholar 

  • Logan GD, Bundesen C (2003) Clever homunculus: is there an endogenous act of control in the explicit task-cuing procedure? J Exp Psychol Hum Percept Perform 29:575–599

    Article  PubMed  Google Scholar 

  • Lopez-Larson MP, King JB, Terry J, McGlade EC, Yurgelun-Todd D (2012) Reduced insular volume in attention deficit hyperactivity disorder. Psychiatry Res 204(1):32–39. doi:10.1016/j.pscychresns.2012.09.009

    Article  PubMed  PubMed Central  Google Scholar 

  • Lorist MM, Klein M, Nieuwenhuis S, De Jong R, Mulder G, Meijman TF (2000) Mental fatigue and task control: planning and preparation. Psychophysiology 37(5):614–625

    Article  CAS  PubMed  Google Scholar 

  • Luck SJ, Heinze HJ, Mangun GR, Hillyard SA (1990) Visual event-related potentials index focused attention within bilateral stimulus arrays. II. Functional dissociation of P1 and N1 components. Electroencephalogr Clin Neurophysiol 75(6):528–542

    Article  CAS  PubMed  Google Scholar 

  • Luck SJ, Chelazzi L, Hillyard SA, Desimone R (1997) Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. J Neurophysiol 77(1):24–42

    CAS  PubMed  Google Scholar 

  • Marco-Pallarés J, Grau C, Ruffini G (2005) Combined ICA-LORETA analysis of mismatch negativity. NeuroImage 25(2):471–477. doi:10.1016/j.neuroimage.2004.11.028

    Article  PubMed  Google Scholar 

  • Masson MEJ (2011) A tutorial on a practical Bayesian alternative to null-hypothesis significance testing. Behav Res Methods 43(3):679–690. doi:10.3758/s13428-010-0049-5

    Article  PubMed  Google Scholar 

  • Mattler U, Wüstenberg T, Heinze H-J (2006) Common modules for processing invalidly cued events in the human cortex. Brain Res 1109(1):128–141. doi:10.1016/j.brainres.2006.06.051

    Article  CAS  PubMed  Google Scholar 

  • Mayr U, Keele SW (2000) Changing internal constraints on action: the role of backward inhibition. J Exp Psychol Gen 129(1):4–26

    Article  CAS  PubMed  Google Scholar 

  • Mayr U, Diedrichsen J, Ivry R, Keele SW (2006) Dissociating task-set selection from task-set inhibition in the prefrontal cortex. J Cogn Neurosci 18:14–21

    Article  PubMed  Google Scholar 

  • Micheli C, Kaping D, Westendorff S, Valiante TA, Womelsdorf T (2015) Inferior-frontal cortex phase synchronizes with the temporal-parietal junction prior to successful change detection. NeuroImage. doi:10.1016/j.neuroimage.2015.06.043

    PubMed  Google Scholar 

  • Mincic AM (2010) Neural substrate of the cognitive and emotional interference processing in healthy adolescents. Acta Neurobiologiae Experimentalis 70(4):406–422

    PubMed  Google Scholar 

  • Monsell S (2003) Task switching. Trends Cognit Sci 7(3):134–140. doi:10.1016/S1364-6613(03)00028-7

    Article  Google Scholar 

  • Mückschel M, Stock A-K, Beste C (2014) Psychophysiological mechanisms of interindividual differences in goal activation modes during action cascading. Cereb Cortex (New York, N.Y.: 1991) 24(8):2120–2129. doi:10.1093/cercor/bht066

  • Munneke J, Heslenfeld DJ, Usrey WM, Theeuwes J, Mangun GR (2011) Preparatory effects of distractor suppression: evidence from visual cortex. PloS One 6(12):e27700. doi:10.1371/journal.pone.0027700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholson R, Karayanidis F, Poboka D, Heathcote A, Michie PT (2005) Electrophysiological correlates of anticipatory task-switching processes. Psychophysiology 42(5):540–554. doi:10.1111/j.1469-8986.2005.00350.x

    PubMed  Google Scholar 

  • Nicholson R, Karayanidis F, Davies A, Michie PT (2006) Components of task-set reconfiguration: differential effects of “switch-to” and “switch-away” cues. Brain Res 1121(1):160–176. doi:10.1016/j.brainres.2006.08.101

    Article  CAS  PubMed  Google Scholar 

  • Nunez PL, Pilgreen KL (1991) The spline-Laplacian in clinical neurophysiology: a method to improve EEG spatial resolution. J Clin Neurophysiol Off Publ Am Electroencephalogr Soc 8(4):397–413

    CAS  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113

    Article  CAS  PubMed  Google Scholar 

  • Pammer K, Hansen P, Holliday I, Cornelissen P (2006) Attentional shifting and the role of the dorsal pathway in visual word recognition. Neuropsychologia 44(14):2926–2936. doi:10.1016/j.neuropsychologia.2006.06.028

    Article  PubMed  Google Scholar 

  • Pascual-Marqui RD (2002) Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 24(Suppl D):5–12

  • Pessoa L, Rossi A, Japee S, Desimone R, Ungerleider LG (2009) Attentional control during the transient updating of cue information. Brain Res 1247:149–158. doi:10.1016/j.brainres.2008.10.010

    Article  CAS  PubMed  Google Scholar 

  • Philipp AM, Koch I (2005) Switching of response modalities. Q J Exp Psychol A 58:1325–1338

    Article  PubMed  Google Scholar 

  • Philipp AM, Weidner R, Koch I, Fink GR (2013) Differential roles of inferior frontal and inferior parietal cortex in task switching: evidence from stimulus-categorization switching and response-modality switching. Human Brain Mapp 34(8):1910–1920. doi:10.1002/hbm.22036

    Article  Google Scholar 

  • Raftery AE (1995) Bayesian model selection in social research. In: Mardsen P (ed) Sociological methodology. Blackwell, Cambridge, pp 11–196

    Google Scholar 

  • Regev S, Meiran N (2015) Cue-type manipulation dissociates two types of task set inhibition: backward inhibition and competitor rule suppression. Psychol Res. doi:10.1007/s00426-015-0663-z

    PubMed  Google Scholar 

  • Reynolds JH, Desimone R (1999) The role of neural mechanisms of attention in solving the binding problem. Neuron 24(1):19–29, 111–125

  • Rossi AF, Pessoa L, Desimone R, Ungerleider LG (2009) The prefrontal cortex and the executive control of attention. Exp Brain Res 192(3):489–497. doi:10.1007/s00221-008-1642-z

    Article  PubMed  Google Scholar 

  • Rushworth MFS, Passingham RE, Nobre AC (2002) Components of switching intentional set. J Cognit Neurosci 14(8):1139–1150. doi:10.1162/089892902760807159

    Article  Google Scholar 

  • Scheil J, Kleinsorge T (2014) N − 2 repetition costs depend on preparation in trials n − 1 and n − 2. J Exp Psychol Learn Mem Cognit 40(3):865–872. doi:10.1037/a0035281

    Article  Google Scholar 

  • Schuch S, Koch I (2003) The role of response selection for inhibition of task sets in task shifting. J Exp Psychol Human Percept Perform 29(1):92–105. doi:10.1037/0096-1523.29.1.92

    Article  Google Scholar 

  • Sekihara K, Sahani M, Nagarajan SS (2005) Localization bias and spatial resolution of adaptive and non-adaptive spatial filters for MEG source reconstruction. NeuroImage 25(4):1056–1067. doi:10.1016/j.neuroimage.2004.11.051

    Article  PubMed  PubMed Central  Google Scholar 

  • Sinai M, Goffaux P, Phillips NA (2007) Cue-versus response-locked processes in backward inhibition: evidence from ERPs. Psychophysiology 44(4):596–609. doi:10.1111/j.1469-8986.2007.00527.x

    Article  PubMed  Google Scholar 

  • Stock A-K, Gohil K, Beste C (2015) Age-related differences in task goal processing strategies during action cascading. Brain Struct Funct. doi:10.1007/s00429-015-1071-2

    Google Scholar 

  • Thiel CM, Fink GR (2008) Effects of the cholinergic agonist nicotine on reorienting of visual spatial attention and top-down attentional control. Neuroscience 152(2):381–390. doi:10.1016/j.neuroscience.2007.10.061

    Article  CAS  PubMed  Google Scholar 

  • Uddin LQ (2015) Salience processing and insular cortical function and dysfunction. Nature Rev Neurosci 16(1):55–61. doi:10.1038/nrn3857

    Article  CAS  Google Scholar 

  • Van Veen V, Carter CS (2002) The anterior cingulate as a conflict monitor: fMRI and ERP studies. Physiol Behav 77(4–5):477–482

    Article  PubMed  Google Scholar 

  • Verleger R, Jaśkowski P, Wascher E (2005) Evidence for an integrative role of P3b in linking reaction to perception. J Psychophysiol 19(3):165–181

    Article  Google Scholar 

  • Vidyasagar TR (1999) A neuronal model of attentional spotlight: parietal guiding the temporal. Brain Res Brain Res Rev 30(1):66–76

    Article  CAS  PubMed  Google Scholar 

  • Vossel S, Thiel CM, Fink GR (2006) Cue validity modulates the neural correlates of covert endogenous orienting of attention in parietal and frontal cortex. NeuroImage 32(3):1257–1264. doi:10.1016/j.neuroimage.2006.05.019

    Article  PubMed  Google Scholar 

  • Wagenmakers E-J (2007) A practical solution to the pervasive problems of p values. Psychon Bull Rev 14(5):779–804

    Article  PubMed  Google Scholar 

  • Wascher E, Beste C (2010) Tuning perceptual competition. J Neurophysiol 103(2):1057–1065. doi:10.1152/jn.00376.2009

    Article  PubMed  Google Scholar 

  • Whitmer AJ, Banich MT (2012) Brain activity related to the ability to inhibit previous task sets: an fMRI study. Cognit Affect Behav Neurosci 12(4):661–670. doi:10.3758/s13415-012-0118-6

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant from the German Research Foundation (DFG) awarded to C. B. (BE4045/10-2) and was partially supported by a Grant of the DFG awarded to R. F. (CRC 940, Project A3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Beste.

Additional information

R. Zhang and A.-K. Stock contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Stock, AK., Fischer, R. et al. The system neurophysiological basis of backward inhibition. Brain Struct Funct 221, 4575–4587 (2016). https://doi.org/10.1007/s00429-016-1186-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-016-1186-0

Keywords

Navigation