Skip to main content
Log in

The role of the right temporoparietal junction in attention and social interaction as revealed by ALE meta-analysis

  • Review
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

The right temporoparietal junction (rTPJ) is frequently associated with different capacities that to shift attention to unexpected stimuli (reorienting of attention) and to understand others’ (false) mental state [theory of mind (ToM), typically represented by false belief tasks]. Competing hypotheses either suggest the rTPJ representing a unitary region involved in separate cognitive functions or consisting of subregions subserving distinct processes. We conducted activation likelihood estimation (ALE) meta-analyses to test these hypotheses. A conjunction analysis across ALE meta-analyses delineating regions consistently recruited by reorienting of attention and false belief studies revealed the anterior rTPJ, suggesting an overarching role of this specific region. Moreover, the anatomical difference analysis unravelled the posterior rTPJ as higher converging in false belief compared with reorienting of attention tasks. This supports the concept of an exclusive role of the posterior rTPJ in the social domain. These results were complemented by meta-analytic connectivity mapping (MACM) and resting-state functional connectivity (RSFC) analysis to investigate whole-brain connectivity patterns in task-constrained and task-free brain states. This allowed for detailing the functional separation of the anterior and posterior rTPJ. The combination of MACM and RSFC mapping showed that the posterior rTPJ has connectivity patterns with typical ToM regions, whereas the anterior part of rTPJ co-activates with the attentional network. Taken together, our data suggest that rTPJ contains two functionally fractionated subregions: while posterior rTPJ seems exclusively involved in the social domain, anterior rTPJ is involved in both, attention and ToM, conceivably indicating an attentional shifting role of this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aichhorn M, Perner J, Weiss B, Kronbichler M, Staffen W, Ladurner G (2009) Temporo-parietal junction activity in theory-of-mind tasks: falseness, beliefs, or attention. J Cogn Neurosci 21:1179–1192. doi:10.1162/jocn.2009.21082

  • Alvarez JA, Freides D (2004) Research on attention deficit hyperactivity disorder using the covert orienting paradigm of Posner. Dev Neuropsychol 26:627–645. doi:10.1207/s15326942dn2602_6

    PubMed  Google Scholar 

  • American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders: DSM-IV. American Psychiatric Association, Washington

    Google Scholar 

  • Amunts K, Schleicher A, Bürgel U, Mohlberg H, Uylings HBM, Zilles K (1999) Broca’s region revisited: cytoarchitecture and intersubject variability. J Comput Neurosci 412:319–341. doi:10.1002/(SICI)1096-9861(19990920)412:2<319:AID-CNE10>3.0.CO;2-7

    CAS  Google Scholar 

  • Apperly IA, Samson D, Chiavarino C, Humphreys GW (2004) Frontal and temporo-parietal lobe contributions to theory of mind: neuropsychological evidence from a false-belief task with reduced language and executive demands. J Cogn Neurosci 16:1773–1784. doi:10.1162/0898929042947928

    PubMed  Google Scholar 

  • Arrington CM, Carr TH, Mayer AR, Rao SM (2000) Neural mechanisms of visual attention: object-based selection of a region in space. J Cogn Neurosci 12:106–117. doi:10.1162/089892900563975

    PubMed  Google Scholar 

  • Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541. doi:10.1002/mrm.1910340409

    CAS  PubMed  Google Scholar 

  • Bledowski C, Prvulovic D, Goebel R, Zanella FE, Linden DEJ (2004) Attentional systems in target and distractor processing: a combined ERP and fMRI study. NeuroImage 22:530–540. doi:10.1016/j.neuroimage.2003.12.034

    PubMed  Google Scholar 

  • Brass M, Derrfuss J, Forstmann B, von Cramon DY (2005) The role of the inferior frontal junction area in cognitive control. Trends Cogn Sci 9:314–316. doi:10.1016/j.tics.2005.05.001

    PubMed  Google Scholar 

  • Brieber S, Neufang S, Bruning N, Kamp-Becker I, Remschmidt H, Herpertz-Dahlmann B, Fink GR, Konrad K (2007) Structural brain abnormalities in adolescents with autism spectrum disorder and patients with attention deficit/hyperactivity disorder. J Child Psychol Psychiatr 48:1251–1258. doi:10.1111/j.1469-7610.2007.01799.x

    Google Scholar 

  • Bultitude JH, Rafal RD, List A (2009) Prism adaption reverses the local processing bias in patients with right temporo-parietal junction lesions. Brain 132:1669–1677. doi:10.1093/brain/awp096

    PubMed Central  PubMed  Google Scholar 

  • Bzdok D, Langner R, Schilbach L, Engemann D, Laird AR, Fox PT, Eickhoff SB (2013a) Segregation of the human medial prefrontal cortex in social cognition. Front Hum Neurosci 7:1–17. doi:10.3389/fnhum.2013.00232

    Google Scholar 

  • Bzdok D, Langner R, Schilbach L, Jakobs O, Roski C, Caspers S, Laird AR, Fox PT, Zilles K, Eickhoff SB (2013b) Characterization of the temporo-parietal junction by combining data-driven parcellation complementary connectivity analyses, and functional decoding. NeuroImage 17:381–392. doi:10.1016/j.neuroimage.2013.05.046

    Google Scholar 

  • Bzdok D, Schilbach L, Vogeley K, Schneider K, Laird AR, Langner R, Eickhoff SB (2012) Parsing the neural correlates of moral cognition: ALE meta-analysis on morality, theory of mind, and empathy. Brain Struct Funct 217:783–796. doi:10.1007/s00429-012-0380-y

    PubMed Central  PubMed  Google Scholar 

  • Cabeza R, Ciaramelli E, Moscovitch M (2012) Cognitive contributions of the ventral parietal cortex: an integrative theoretical account. Trends Cogn Sci 16:338–352. doi:10.1016/j.tics.2012.04.008

    PubMed Central  PubMed  Google Scholar 

  • Caspers S, Geyer S, Schleicher A, Mohlberg H, Amunts K, Zilles K (2006) The human inferior parietal cortex: cytoarchitectonic parcellation and interindividual variability. NeuroImage 33:430–448. doi:10.1016/j.neuroimage.2006.06.054

    PubMed  Google Scholar 

  • Caspers S, Zilles K, Laird AR, Eickhoff SB (2010) ALE meta-analysis of activation observation and imitation in the human brain. NeuroImage 50:1148–1167. doi:10.1016/j.neuroimage.2009.12.112

    PubMed  Google Scholar 

  • Chen Q, Weidner R, Vossel S, Weiss PH, Fink GR (2012) Neural mechanisms of attentional reorienting in three-dimensional space. J Neurosci 32:13352–13362. doi:10.1523/JNEUROSCI.1772-12.2012

  • Christakou A, Murphy CM, Chantiluke K, Cubillo AI, Smith AB, Giampietro V, Daly E, Ecker C, Robertson D, MRC AIMS consortium, Murphy DG, Rubia K (2013) Disorder-specific functional abnormalities during sustained attention in youth with attention deficit hyperactivity disorder (ADHD) and with autism. Mol Psychiatr 18:236–244. doi:10.1038/mp.2011.185

    CAS  Google Scholar 

  • Corbetta M, Kincade JM, Ollinger JM, McAvoy MP, Shulman GL (2000) Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nat Neurosci 3:292–297. doi:10.1038/73009

    CAS  PubMed  Google Scholar 

  • Corbetta M, Kincade JM, Shulman GL (2002) Neural systems for visual orienting and their relationships to spatial working memory. J Cogn Neurosci 14:508–523. doi:10.1162/089892902317362029

  • Corbetta M, Patel G, Shulman GL (2008) The reorienting system of the human brain: from environment to theory of mind. Neuron 58:306–324. doi:10.1016/j.neuron.2008.04.017

    PubMed Central  CAS  PubMed  Google Scholar 

  • Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215. doi:10.1038/nrn755

    CAS  PubMed  Google Scholar 

  • Coull JT, Frith CD, Büchel C, Nobre AC (2000) Orienting attention in time: behavioural and neuroanatomical distinction between exogenous and endogenous shifts. Neuropsychologia 38:808–819. doi:10.1016/S0028-3932(99)00132-3

  • Decety J, Lamm C (2007) The role of the right temporoparietal junction in social interaction: how low-level computational processes contribute to meta-cognition. Neurosci 13:580–593. doi:10.1177/1073858407304654

    Google Scholar 

  • Di Martino A, Zuo XN, Kelly C, Grzadzinski R, Mennes M, Schvarcz A, Rodman J, Lord C, Castellanos FX, Milham MP (2013) Shared and distinct intrinsic functional network centrality in autism and attention-deficit/hyperactivity disorder. Biol Psychiatry 74:623–632. doi:10.1016/j.biopsych.2013.02.011

    PubMed  Google Scholar 

  • Dodell-Feder D, Koster-Hale J, Bedny M, Saxe R (2011) fMRI item analysis in a theory of mind task. NeuroImage 55:705–712. doi:10.1016/j.neuroimage.2010.12.040

    PubMed  Google Scholar 

  • Döhnel K, Schuwerk T, Meinhardt J, Sodian B, Hajak G, Sommer M (2012) Functional activity of the right temporo-parietal junction and of the medial prefrontal cortex associated with true and false belief reasoning. NeuroImage 60:1652–1661. doi:10.1016/j.neuroimage.2012.01.073

    PubMed  Google Scholar 

  • Doricchi F, Macci E, Silvetti M, Macaluso E (2010) Neural correlates of the spatial and expectancy components of endogenous and stimulus-driven orienting of attention in the Posner task. Cereb Cortex 20:1574–1585. doi:10.1093/cercor/bhp215

  • Downar J, Crawley AP, Mikulis DJ, Davis KD (2000) A multimodal cortical network for the detection of changes in the sensory environment. Nat Neurosci 3:277–283. doi:10.1038/72991

    CAS  PubMed  Google Scholar 

  • Eickhoff SB, Bzdok D, Laird AR, Kurth F, Fox PT (2012) Activation likelihood estimation meta-analysis revisited. NeuroImage 59:2349–2361. doi:10.1016/j.neuroimage.2011.09.017

    PubMed Central  PubMed  Google Scholar 

  • Eickhoff SB, Grefkes C (2011) Approaches for the integrated analysis of structure, function and connectivity of the human brain. Clin EEG Neurosci 42:107–121. doi:10.1177/155005941104200211

    PubMed  Google Scholar 

  • Eickhoff SB, Laird AR, Grefkes C, Wang LE, Zilles K, Fox PT (2009) Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Hum Brain Mapp 30:2907–2926. doi:10.1002/hbm.20718

    PubMed Central  PubMed  Google Scholar 

  • Eickhoff SB, Paus T, Caspers S, Grosbas MH, Evans AC, Zilles K, Amunts K (2007) Assignment of functional activations to probabilistic cytoarchitectonic areas revisited. NeuroImage 36:1325–1335. doi:10.1016/j.neuroimage.2007.03.060

    Google Scholar 

  • Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage 25:1325–1335. doi:10.1016/j.neuroimage.2004.12.034

    PubMed  Google Scholar 

  • Elsabbagh M, Fernandes J, Webb SJ, Dawson J, Charman T, Johnson MH, The British Autism Study of Infant Siblings Team (2013) Disengagement of visual attention in infancy is associated with emerging Autism in toddlerhood. Biol Psychiat 74:189–194. doi:10.1016/j.biopsych.2012.11.030

    Google Scholar 

  • Engelmann JB, Damaraju E, Padmala S, Pessoa L (2009) Combined effects of attention and motivation on visual task performance: transient and sustained motivational effects. Front Hum Neurosci 3:1–17. doi:10.3389/neuro.09.004.2009

  • Fan J, McCandliss BD, Fossella J, Flombaum JI, Posner MI (2005) The activation of attentional networks. NeuroImage 26:471–479. doi:10.1016/j.neuroimage.2005.02.004

    PubMed  Google Scholar 

  • Fletcher PC, Happé F, Frith U, Baker SC, Dolan RJ, Frackowiak RSJ, Frith CD (1995) Other minds in the brain: a functional imaging study of ‘theory of mind’ in story comprehension. Cognition 57:109–128. doi:10.1016/0010-0277(95)00692-R

  • Fox PT, Lancaster JL (2002) Opinion: mapping context and content: the BrainMap model. Nat Rev Neurosci 3:319–321. doi:10.1038/nrn789

    CAS  PubMed  Google Scholar 

  • Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711. doi:10.1038/nrn2201

    CAS  PubMed  Google Scholar 

  • Fox MD, Zhang D, Snyder AZ, Raichle ME (2009) The global signal and observed anticorrelated resting state brain networks. J Neurophysiol 101:3270–3283. doi:10.1152/jn.90777.2008

    PubMed Central  PubMed  Google Scholar 

  • Gallagher HL, Frith CD (2003) Functional imaging of ‘theory of mind’. Trends Cogn Sci 7:77–83. doi:10.1016/S1364-6613(02)00025-6

    PubMed  Google Scholar 

  • Gallagher HL, Happé F, Brunswick N, Fletcher PC, Frith U, Frith CD (2000) Reading the mind in cartoons and stories: an fMRI study of ‘theory of mind’ in verbal and nonverbal tasks. Neuropsychologia 38:11–21. doi:10.1016/S0028-3932(99)00053-6

  • Geng JJ, Mangun GR (2011) Right temporoparietal junction activation by a salient contextual cue facilitates target discrimination. NeuroImage 54:594–601. doi:10.1016/j.neuroimage.2010.08.025

    PubMed Central  PubMed  Google Scholar 

  • Geng JJ, Vossel S (2013) Re-evaluating the role of TPJ in attentional control: contextual updating? Neurosci Biobehav Rev. doi:10.1016/j.neubiorev.2013.08.010

    PubMed Central  PubMed  Google Scholar 

  • Geyer S (2004) The microstructural border between the motor and the cognitive domain in the human cerebral cortex. Adv Anat Embryol Cel 174:1–89. doi:10.1007/978-3-642-18910-4_1

    CAS  Google Scholar 

  • Giessing C, Thiel CM, Stephan KE, Rösler F, Fink GR (2004) Visuospatial attention: how to measure effects of infrequent, unattended events in a blocked stimulus design. NeuroImage 23:1370–1381. doi:10.1016/j.neuroimage.2004.08.008

    PubMed  Google Scholar 

  • Gillebert CR, Mantini D, Peeters R, Dupont P, Vandenberghe R (2013) Cytoarchitectonic mapping of attentional selection and reorienting in parietal cortex. NeuroImage 67:257–272. doi:10.1016/j.neuroimage.2012.11.026

  • Gitelman DR, Nobre AC, Parrish TB, LaBar KS, Kim YH, Meyer JR, Mesulam M (1999) A large-scale distributed network for covert spatial attention: further anatomical delineation based on stringent behavioural and cognitive controls. Brain 122:1093–1106. doi:10.1093/brain/122.6.1093

    PubMed  Google Scholar 

  • Gobbini MI, Koralek AC, Bryan RE, Montgomery KJ, Haxby JV (2007) Two takes on the social brain: a comparison of theory of mind tasks. J Cogn Neurosci 19:1803–1814. doi:10.1162/jocn.2007.19.11.1803

  • Hartwright CE, Apperly IA, Hansen PC (2012) Multiple roles for executive control in belief-desire reasoning: distinct neural networks are recruited for self perspective inhibition and complexity of reasoning. NeuroImage 61:921–930. doi:10.1016/j.neuroimage.2012.03.012

  • Hooker CI, Verosky SC, Germine LT, Knight RT, D’Esposito M (2008) Mentalizing about emotion and its relationship to empathy. SCAN 3:204–217. doi:10.1093/scan/nsn019

  • Hooker CI, Verosky SC, Germine LT, Knight RT, D’Esposito M (2010) Neural activity during social signal perception correlates with self-reported empathy. Brain Res 1308:100–113. doi:10.1016/j.brainres.2009.10.006

    PubMed Central  CAS  PubMed  Google Scholar 

  • Indovina I, Macaluso E (2004) Occipital–parietal interactions during shifts of exogenous visuospatial attention: trial-dependent changes of effective connectivity. MRI 22:1477–1486. doi:10.1016/j.mri.2004.10.016

  • Indovina I, Macaluso E (2007) Dissociation of stimulus relevance and saliency factors during shifts of visuospatial attention. Cereb Cortex 17:1701–1711. doi:10.1093/cercor/bhl081

  • Jackson PL, Brunet E, Meltzoff AN, Decety J (2006) Empathy examined through the neural mechanisms involved in imaging how I feel versus how you feel pain. Neuropsycholgia 44:752–761. doi:10.1016/j.neuropsychologia.2005.07.015

    Google Scholar 

  • Jakobs O, Langner R, Caspers S, Roski C, Cieslik EC, Zilles K, Laird AR, Fox PT, Eickhoff SB (2012) Across-study and within-subject functional connectivity of a right temporo-parietal junction subregion involved in stimulus-context integration. NeuroImage 60:2389–2398. doi:10.1016/j.neuroimage.2012.02.037

    PubMed Central  PubMed  Google Scholar 

  • Jakobs O, Wang LE, Dafotakis M, Grefkes C, Zilles K, Eickhoff SB (2009) Effects of timing and movement uncertainty implicate the temporo-parietal junction in the prediction of forthcoming motor actions. NeuroImage 47:667–677. doi:10.1016/j.neuroimage.2009.04.065

    PubMed  Google Scholar 

  • Jenkins AC, Mitchell JP (2010) Mentalizing under uncertainty: dissociated neural responses to ambiguous and unambiguous mental state inference. Cereb Cortex 20:404–410. doi:10.1093/cercor/bhp109

  • Jimura K, Konishi S, Asari T, Miyashita Y (2010) Temporal pole activity during understanding other persons’ mental states correlates with neuroticism trait. Brain Res 1328:104–112. doi:10.1016/j.brainres.2010.03.016

  • Kobayashi C, Glover GH, Temple E (2006) Cultural and linguistic influence on neural bases of ‘theory of mind’: an fMRI study with Japanese bilinguals. Brain Lang 98:210–220. doi:10.1016/j.bandl.2006.04.013

  • Konrad K, Neufang S, Thiel CM, Specht K, Hanisch C, Fan J, Herpertz-Dahlmann B, Fink GR (2005) Development of attentional networks: an fMRI study with children and adults. NeuroImage 28:429–439. doi:10.1016/j.neuroimage.2005.06.065

  • Korkmaz B (2011) Theory of mind and neurodevelopmental disorders of childhood. Pediatr Res 69:101R–108R. doi:10.1203/PDR.0b013e318212c177

    PubMed  Google Scholar 

  • Koster-Hale J, Saxe R (2013) Theory of mind: a neural prediction problem. Neuron 79:836–848. doi:10.1016/j.neuron.2013.08.020

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kubit B, Jack AI (2013) Rethinking the role of the rTPJ in attention and social cognition in light of the opposing domains hypothesis: findings from an ALE-based meta-analysis and resting-state functional connectivity. Front Hum Neurosci 7:1–18. doi:10.3389/fnhum.2013.00323

    Google Scholar 

  • Laird AR, Eickhoff SB, Fox PM, Uecker AM, Ray KL, Saenz JJ Jr, McKay DR, Bzdok D, Laird RW, Robinson JL, Turner JA, Turkeltaub PE, Lancaster JL, Fox PT (2011) The BrainMap strategy for standardization, sharing, and meta-analysis of neuroimaging data. BMC Res Notes 4:1–9. doi:10.1186/1756-0500-4-349

    Google Scholar 

  • Laird AR, Eickhoff SB, Kurth F, Fox PM, Uecker AM, Turner JA, Robinson JL, Lancaster JL, Fox PT (2009a) ALE meta-analysis workflows via the brainmap database: progress towards a probabilistic functional brain atlas. Front Neuroinform 3:1–11. doi:10.3389/neuro.11.023.2009

    Google Scholar 

  • Laird AR, Eickhoff SB, Li K, Robin DA, Glahn DC, Fox PT (2009b) Investigating the functional heterogeneity of the default mode network using coordinate-based meta-analytic modeling. J Neurosci 29:14496–14505. doi:10.1523/JNEUROSCI.4004-09.2009

    PubMed Central  CAS  PubMed  Google Scholar 

  • Laird AR, Eickhoff SB, Rottschy C, Bzdok D, Ray KL, Fox PT (2013) Networks of task co-activations. NeuroImage 80:505–514. doi:10.1016/j.neuroimage.2013.04.073

    PubMed Central  PubMed  Google Scholar 

  • Lancaster JL, Tordesillas-Gutierrez D, Martinez M, Salinas F, Evans A, Zilles K, Mazziotta JC, Fox PT (2007) Bias between MNI and Talairach coordinates analysed using the ICBM-152 brain template. Hum Brain Mapp 28:1194–1205. doi:10.1002/hbm.20345

    PubMed  Google Scholar 

  • Landry O, Parker A (2013) A meta-analysis of visual orienting in autism. Front Hum Neurosci 7:1–12. doi:10.3389/fnhum.2013.00833

    Google Scholar 

  • Lombardo MV, Chakrabarti B, Bullmore ET, Wheelwright SJ, Sadek SA, Suckling J, MRC AIMS Consortium, Baron-Cohen S (2009) Shared neural circuits for mentalizing about the self and others. J Cogn Neurosci 22:1623–1635. doi:10.1162/jocn.2009.21287

    Google Scholar 

  • Macaluso E, Frith CD, Driver J (2002) Supramodal effects of covert spatial orienting triggered by visual or tactile events. J Cogn Neurosci 14:389–401. doi:10.1162/089892902317361912

    PubMed  Google Scholar 

  • Macaluso E, Patria F (2007) Spatial re-orienting of visual attention along the horizontal or the vertical axis. Exp Brain Res 180:23–34. doi:10.1007/s00221-006-0841-8

  • Mar RA (2011) The neural bases of social cognition and story comprehension. Annu Rev Psychol 62:103–134. doi:10.1146/annurev-psych-120709-145406

    PubMed  Google Scholar 

  • Mars RB, Neubert F-X, Noonan MP, Sallet J, Toni I, Rushworth MFS (2012a) On the relationship between the “default mode network” and the “social brain”. Front Hum Neurosci 6:1–9. doi:10.3389/fnhum.2012.00189

    Google Scholar 

  • Mars RB, Sallet J, Neubert F-X, Rushworth MFS (2013) Connectivity profiles reveal the relationship between brain areas for social cognition in human and monkey temporoparietal cortex. Proc Natl Acad Sci USA 110:10806–10811. doi:10.1073/pnas.1302956110

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mars RB, Sallet J, Schüffelgen U, Jbabdi S, Toni I, Rushworth MFS (2012b) Connectivity-based subdivisions of the right “temporoparietal junction area”: evidence for different areas participating in different networks. Cereb Cortex 22:1894–1903. doi:10.1093/cercor/bhr268

    PubMed  Google Scholar 

  • Mattler U, Wüstenberg T, Heinze H-J (2006) Common modules for processing invalidly cued events in the human cortex. Brain Res 1109:128–141. doi:10.1016/j.brainres.2006.06.051

  • Mayer AR, Franco AR, Harrington DL (2009) Neuronal modulation of auditory attention by informative and uninformative spatial cues. Hum Brain Mapp 30:1652–1666. doi:10.1002/hbm.20631

  • Mayer AR, Harrington D, Adair JC, Lee R (2006) The neural networks underlying endogenous auditory covert orienting and reorienting. NeuroImage 30:938–949. doi:10.1016/j.neuroimage.2005.10.050

    PubMed  Google Scholar 

  • Mesulam MM (1981) A cortical network for directed attention and unilateral neglect. Ann Neurol 10:309–325. doi:10.1002/ana.410100402

    CAS  PubMed  Google Scholar 

  • Mitchell JP (2008) Activity in right temporo-parietal is not selective for theory of mind. Cereb Cortex 18:262–271. doi:10.1093/cercor/bhm051

    PubMed  Google Scholar 

  • Moran JM, Jolly E, Mitchell JP (2012) Social-cognitive deficits in normal aging. J Neurosci 32:5553–5561. doi:10.1523/JNEUROSCI.5511-11.2012

  • Mundy P, Newell L (2007) Attention, joint attention, and social cognition. Curr Dir Psychol Sci 16:269–274. doi:10.1111/j.1467-8721.2007.00518.x

    PubMed Central  PubMed  Google Scholar 

  • Natale E, Marzi CA, Macaluso E (2009) FMRI correlates of visuo-spatial reorienting investigated with an attention shifting double-cue paradigm. Hum Brain Mapp 30:2367–2381. doi:10.1002/hbm.20675

  • Nichols T, Brett M, Andersson J, Wager T, Poline JB (2005) Valid conjunction inference with the minimum statistic. NeuroImage 25:653–660. doi:10.1016/j.neuroimage.2004.12.005

    PubMed  Google Scholar 

  • Nieuwenhuys R, Voogd J, van Huijzen C (2007) The human central nervous system: a synopsis and atlas, 4th edn. Springer, Berlin

    Google Scholar 

  • Paynter J, Peterson C (2010) Language and ToM development in autism versus Asperger syndrome: contrasting influences of syntactic versus lexical/semantic maturity. Res Autism Spectr Dis 4:377–385. doi:10.1016/j.rasd.2009.10.005

    Google Scholar 

  • Perner J, Aichhorn M, Kronbichler M, Staffen W, Ladurner G (2006) Thinking of mental and other representations: The roles of the left and right temporo-parietal junction. Soc Neurosci 1:245–258. doi:10.1080/17470910600989896

  • Polderman TJ, Hoekstra RA, Vinkhuyzen AA, Sullivan PF, van der Sluis S, Posthuma D (2013) Attentional switching forms a genetic link between attention problems and autistic traits in adults. Psychol Med 43:1985–1996. doi:10.1017/S0033291712002863

    PubMed Central  CAS  PubMed  Google Scholar 

  • Posner MI, Snyder CRR, Davidson BJ (1980) Attention and the detection of signals. J Exp Psychol Gen 109:160–174. doi:10.1037//0096-3445.109.2.160

    CAS  Google Scholar 

  • Rehme AK, Eickhoff SB, Grefkes C (2013) State-dependent differences between functional and effective connectivity of the human cortical motor system. NeuroImage 63:237–246. doi:10.1016/j.neuroimage.2012.11.027

    Google Scholar 

  • Rommelse NN, Geurts HM, Franke B, Buitelaar JK, Hartman CA (2011) A review on cognitive and brain endophenotypes that may be common in autism spectrum disorder and attention-deficit/hyperactivity disorder and facilitate the search for pleiotropic genes. Neurosci Biobehav Rev 35:1363–1396. doi:10.1016/j.neubiorev.2011.02.015

    CAS  PubMed  Google Scholar 

  • Rothbart MK, Sheese BE, Rueda MR, Posner MI (2011) Developing mechanisms of self-regulation in early life. Emot Rev 3:207–213. doi:10.1177/1754073910387943

    PubMed Central  PubMed  Google Scholar 

  • Rothmayr C, Sodian B, Hajak G, Döhnel K, Meinhardt J, Sommer M (2011) Common and distinct neural networks for false-belief reasoning and inhibitory control. NeuroImage 56:1705–1713. doi:10.1016/j.neuroimage.2010.12.052

  • Rottschy C, Kleiman A, Dogan I, Lagner R, Mirzazade S, Kronenbuerger M, Werner C, Shah NJ, Schulz JB, Eickhoff SB, Reetz K (2013) Diminished activation of motor working-memory networks in Parkinson’s disease. PLoS One 8:1–12. doi:10.1371/journal.pone.0061786

    Google Scholar 

  • Rottschy C, Langner R, Dogan I, Reetz K, Laird AR, Schulz JB, Fox PT, Eickhoff SB (2012) Modelling neural correlates of working memory: a coordinate-based meta-analysis. NeuroImage 60:830–846. doi:10.1016/j.neuroimage.2011.11.050

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ruby P, Decety J (2004) How would you feel versus how do you think she would feel? A neuroimaging study of perspective-taking with social emtoions. J Cogn Neurosci 16:988–999. doi:10.1162/0898929041502661

    PubMed  Google Scholar 

  • Samson AC, Zysset S, Huber O (2008) Cognitive humor processing: different logical mechanisms in nonverbal cartoons—an fMRI study. Soc Neurosci 3:125–140. doi:10.1080/17470910701745858

    PubMed  Google Scholar 

  • Santangelo V, Belardinelli MO, Spence C, Macaluso E (2008) Interactions between voluntary and stimulus-driven spatial attention mechanisms across sensory modalities. J Cogn Neurosci 21:2384–2397. doi:10.1162/jocn.2008.21178

    Google Scholar 

  • Satterthwaite TD, Elliott MA, Gerraty RT, Ruparel K, Loughead J, Calkins ME, Eickhoff SB, Hakonarson H, Gur RC, Gur RE, Wolf DH (2013) An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. NeuroImage 64:240–256. doi:10.1016/j.neuroimage.2012.08.052

    PubMed  Google Scholar 

  • Saxe R, Carey S, Kanwisher N (2004) Understanding other minds: linking developmental psychology and functional neuroimaging. Annu Rev Psychol 55:87–124. doi:10.1146/annurev.psych.55.090902.142044

    CAS  PubMed  Google Scholar 

  • Saxe R, Kanwisher N (2003) People thinking about thinking people. The role of the temporo-parietal junction in ‘theory of mind’. NeuroImage 19:1835–1842. doi:10.1016/S1053-8119(03)00230-1

    CAS  PubMed  Google Scholar 

  • Saxe R, Powell LJ (2006) It’s the thought that counts: specific brain regions for one component of theory of mind. Psychol Sci 17:692–699. doi:10.1111/j.1467-9280.2006.01768.x

    PubMed  Google Scholar 

  • Saxe R, Schulz LE, Jiang YV (2006) Reading minds versus following rules: dissociating theory of mind and executive control in the brain. Soc Neurosci 1:284–298. doi:10.1080/17470910601000446

    PubMed  Google Scholar 

  • Schilbach L, Bzdok D, Timmermans B, Fox PT, Laird AR, Vogeley K, Eickhoff SB (2012) Introspective minds: using ALE meta-analyses to study commonalities in the neural correlates of emotional processing, social and unconstrained cognition. PLoS One 7:1–10. doi:10.1371/journal.pone.0030920

    Google Scholar 

  • Scholz J, Triantafyllou C, Whitfield-Gabrieli S, Brown EN, Saxe R (2009) Distinct regions of right temporo-parietal junction are selective for theory of mind and exogenous attention. PLoS One 4:1–7. doi:10.1371/journal.pone.0004869

    Google Scholar 

  • Serences JT, Shomstein S, Leber AB, Golay X, Egeth HE, Yantis S (2005) Coordination of voluntary and stimulus-driven attentional control in human cortex. Psychol Sci 16:114–122. doi:10.1111/j.0956-7976.2005.00791.x

    PubMed  Google Scholar 

  • Simonoff E, Pickles A, Charman T, Chandler S, Loucas T, Baird G (2008) Psychiatric disorders in children with autism spectrum disorders: prevalence, comorbidity, and associated factors in a population-derived sample. J Am Acad Child Psychiatry 47:921–929. doi:10.1097/CHI.0b013e318179964f

    Google Scholar 

  • Sommer M, Döhnel K, Sodian B, Meinhardt J, Thoermer C, Hajak G (2007) Neural correlates of true and false belief reasoning. NeuroImage 35:1378–1384. doi:10.1016/j.neuroimage.2007.01.042

    PubMed  Google Scholar 

  • Sperduti M, Delaveau P, Fossati P, Nadel J (2011) Different brain structures related to self- and external-agency attribution: a brief review and meta-analysis. Brain Struct Funct 216:151–157. doi:10.1007/s00429-010-0298-1

    PubMed  Google Scholar 

  • Sridharan D, Levitin DJ, Menon V (2008) A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci USA 105:12569–12574. doi:10.1073/pnas.0800005105

    PubMed Central  CAS  PubMed  Google Scholar 

  • Thiel CM, Zilles K, Fink GR (2004) Cerebral correlates of alerting, orienting and reorienting of visuospatial attention: an event-related fMRI study. NeuroImage 21:318–328. doi:10.1016/j.neuroimage.2003.08.044

    PubMed  Google Scholar 

  • Turkeltaub PE, Eden GF, Jones KM, Zeffiro TA (2002) Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. NeuroImage 16:765–780. doi:10.1006/nimg.2002.1131

    PubMed  Google Scholar 

  • Turkeltaub PE, Eickhoff SB, Laird AR, Fox M, Wiener M, Fox P (2012) Minimizing within-experiment and within-group effects in activation likelihood estimation meta-analysis. Hum Brrain Mapp 33:1–13. doi:10.1002/hbm.21186

    Google Scholar 

  • Uekermann J, Kraemer M, Abdel-Hamid M, Schimmelmann BG, Hebebrand J, Daum I, Wiltfang J, Kis B (2010) Social cognition in attention-deficit hyperactivity disorder (ADHD). Neurosci Biobahav Rev 34:734–743. doi:10.1016/j.neubiorev.2009.10.009

    CAS  Google Scholar 

  • Van der Meer L, Groenewold NA, Nolen WA, Pijnenborg M, Aleman A (2011) Inhibit yourself and understand the other: neural basis of distinct processes underlying theory of mind. NeuroImage 56:2364–2374. doi:10.1016/j.neuroimage.2011.03.053

    PubMed  Google Scholar 

  • Van Overwalle F (2009) Social cognition and the brain: a meta-analysis. Hum Brain Mapp 30:829–858. doi:10.1002/hbm.20547

    PubMed  Google Scholar 

  • Vogeley K, May M, Ritzl A, Falkai P, Zilles K, Fink GR (2004) Neural correlates of first-person perspective as one constituent of human self-consciousness. J Cogn Neurosci 16:817–827. doi:10.1162/089892904970799

    CAS  PubMed  Google Scholar 

  • Vossel S, Thiel CM, Fink GR (2006) Cue validity modulates the neural correlates of covert endogenous orienting of attention in parietal and frontal cortex. NeuroImage 32:1257–1264. doi:10.1016/j.neuroimage.2006.05.019

    PubMed  Google Scholar 

  • Vossel S, Weidner R, Thiel CM, Fink GR (2008) What is “odd” in Posner’s location-cueing paradigm? Neural responses to unexpected location and feature changes compared. J Cogn Neurosci 21:30–41. doi:10.1162/jocn.2009.21003

    Google Scholar 

  • Weissenbacher A, Kasess C, Gerstl F, Lanzenberger R, Moser E, Windischberger C (2009) Correlations and anticorrelations in resting-state functional connectivity MRI: a quantitative comparison of preprocessing strategies. Neuroimage 47:1408–1416. doi:10.1016/j.neuroimage.2009.05.005

    PubMed  Google Scholar 

  • Weissman DH, Prado J (2012) Heightened activity in a key region of the ventral attention network is linked to reduced activity in a key region of the dorsal attention network during unexpected shifts of covert visual spatial attention. NeuroImage 61:798–804. doi:10.1016/j.neuroimage.2012.03.032

    PubMed  Google Scholar 

  • Wellman HM, Cross D, Watson J (2001) Meta-analysis of theory-of-mind development: the truth about false belief. Child Dev 72:655–684. doi:10.1111/1467-8624.00304

    CAS  PubMed  Google Scholar 

  • Wimmer H, Perner J (1983) Beliefs about beliefs: representation and constraining function of wrong beliefs in young children’s understanding of deception. Cognition 13:103–128. doi:10.1016/0022-0965(85)90051-7

    CAS  PubMed  Google Scholar 

  • Young L, Cushman F, Hauser M, Saxe R (2007) The neural basis of the interaction between theory of mind and moral judgment. PNAS 104:8235–8240. doi:10.1073/pnas.0701408104

    PubMed Central  CAS  PubMed  Google Scholar 

  • Young L, Dodell-Feder D, Saxe R (2010) What gets the attention of the temporo-parietal junction? An fMRI investigation of attention and theory of mind. Neuropsychologia 48:2658–2664. doi:10.1016/j.neuropsychologia.2010.05.012

    PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Krall.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 949 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krall, S.C., Rottschy, C., Oberwelland, E. et al. The role of the right temporoparietal junction in attention and social interaction as revealed by ALE meta-analysis. Brain Struct Funct 220, 587–604 (2015). https://doi.org/10.1007/s00429-014-0803-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0803-z

Keywords

Navigation